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'1 Introduction

Among the many possible norm-based optimization methods, the concept of H.-optimal
control has gained enormous attention in the past few years. Attractivity of design methods
based on the H, —norm is due to the fact that this methodology takes, in a direct and
effective manner, unmodeled dynamics and other uncertain system parameters into account.
Early LQ-based methods tried to account for these uncertainties by introducing, in addition
to the real process and sensor noises, fictitious noises into the output and state equations of
the linear plant model. This assumption led to the LQG design methodology using Kalman
filters as the stochastic counterpart to the deterministic Luenberger observer. In most cases,
however, the assumption of random noises entering the system having a certain distribution
is not valid.

Here the H, -framework, based on the Small Gain Theorem and the Youla- (Q-)
Parametrization, effectively treats system uncertainties in the control-law synthesis. The
H,-norm of a system can be interpreted as the maximum “gain” of a transfer function
in the frequency domain. The Small Gain Theorem then provides a pathway to define
robust stability of a system to uncertain inputs in terms of the H,-norm of this system.
Under certain assumptions, the H.-bound control problem using full-state feedback and
the observer-based (full or reduced order) H.-output feedback problem have been mostly
solved. However, when such a solution exists, it is usually not unique. Namely, there exists
an infinite number of controllers satisfying the given H,-bound. The problem of actually
minimizing the . -norm of a system has proven to be undesirable in many cases as it results
in controllers with high gains or large control bandwidth.

A design approach involving a mixed H,/H.. norm strives to combine the advantages of
both methods. The problem is to

e Minimize the H,-norm of the closed-loop transfer function and thus minimize the RMS
values of the outputs for a system driven by white-noise inputs, and at the same time

o Keep the H  -norm of the closed-loop system below a certain bound, or minimize this
norm to gain robustness and account for uncertain exogenous disturbances that have

a certain norm bound.

This advantage motivates research activities toward finding solutions to the mixed H,/H -
control problem. In general. a mixed H,/H.-control can be termed as "LQG with robust sta-
bility’, a property that regular LQG cannot provide. The problem of mixed H;/H_,-control
using state feedback or full and reduced order dynamic compensators has been addressed
intensively over the past two years. Current research in this field will be discussed with more
depth in Chapter 4.

As in LQ-based methods, the H,,-control problem and the mixed H;/ H,-control problem
with controllers of fixed structure and order remains a topic of current research. Some
theoretical results have been found and numerical implementation of the solution algorithm
remains difficult, mostly relying on approximations and numerical optimization methods.
The most frequently used method for low-order controller design consists of first performing
a plant order reduction which is then followed by a control-law synthesis using the reduced-
order plant model.



The approach developed in our research is based on a finite time cost functional that
depicts an H-bound control problem in a Hy-optimization setting. The assumption of a
finite-time cost functional is very attractive as it allows the optimization process to start
with an initial controller guess that is not necessarily stabilizing. Another motivation for the
use of a finite time criterion in the mixed H,/H .- control problem as well as the H-control
problem is the fact that, in steady state. existence of a controller is solely based on the
solvability of certain algebraic Riccati equations. If a solution cannot be found, the method
would break down with an unbounded objective function. The time-domain approach - and
in particular using a finite-time horizon - offers more insights into the nature of the problem
and provides a uniquely different, non-Riccati hased controller design method.

Finally, the nature of our research is toward a practical implementation of the He-
control algorithms for arbitrary fixed controller structures. We feel strongly that practical
application has fallen short of all the existing theory in H.. and mixed H,/H, -control. It
is neccessary to develop algorithms that address practical problems faced by control design
engineers and to provide design tools for this purpose in the fields mentioned above. Thus,
our attemps will follow a more application oriented line of research rather than a theoretical
one. 7 '

The goal is to define a time-domain cost function that optimizes the H,-norm of a system
with an H,,-constraint function. With this cost functional and as {; — 20, a necessary and
sufficient condition for ||H|ls < 3 can be established where « is a prespecified parameter.
Thus, for a finite ¢, the constraint provides “information’ for the H,-optimization to yield
the desired H.-bound. It is desired to append a possible H,-constraint either as a side con-
straint (in form of an inequality) or. to intorporate the constraint directly into the function
on which the mixed H,/ H.-control is based. The finite-time approach taken is advantageous
due to the fact that no stabilizing controller is required in this procedure. Furthermore, for
a finite terminal time, all considered functions in the cost functional and their sensitivity
to design parameters are well behaved. The optimal controller will then be achieved in the
limit of t; — oc. In most practical situations, the iterative procedure converges to. a nearly
steady-state solution when i is relatively large compared to the slowest time constant of
the closed-loop modes. The resulting controller is then assumed to be an optimal solution
for the steady-state case. Of course, after a controller has been designed, the norm bound as
well as stability can be confirmed using the singular value and the eigenvalue analysis of the
corresponding closed-loop system. It should be noted that when ¢ is small, this approach
does not guarantee stability (in contrast to methods based on the Youla parametrization) or
satisfy the norm bound (as in methods based on algebraic Riccati equations).

Organization of this research interim report is as follows. In Chapter 2 we go over the
basic norm definitions and cover some preliminaries. In Chapter 3 the H-theory leading
to the mixed H,/H.,,-problem is reviewed. Chapter 4 covers the most recent advances
in mixed H,/H.-theory. Chapter 5 investigates an important cost function in the time
domain. Chapter 6 addresses our approach to the mixed H,/H.-control problem with an
appended Ho-bound constraint. The precise cost function for a mixed H,/Ho,-control is
defined. Chapter 7 discusses a possible algorithm for the numerical solution of the proposed
cost function and the controller design. Finally, the remaining research work is outlined in
Chapter 3. :

It should be noted that review of the LQ-type Hy-optimization theory falls short of



the coverage presented here for H. -theory as Hj-methods have been widely known. The
significant part is the H.-bound characterization.

2 Norm Definitions and Preliminaries
Let G := (A, B,(, D) denote a linear time invariant system as follows.

[ = As(t)+ Bul(t)
G'{ () = Ca(t)+ Dult) ()

Unless otherwise stated, the initial condition z(0) of the system is assumed to be zero. Then
the transfer function G(s) from w(s) to z(s) is given by G(s) = C(s] — A)"'B + D.

2.1 H, and H..-Norms and their Properties

Before the actual norm definitions are stated, we define two important frequency-domain

spaces.

o The frequency-domain space Hy = Hy(s,C™*") consists of all matrix functions
F(s) € C™*™ of a complex parameter s which are analytic in the open right-half
plane (that is Re(s) > 0, Re(.) denotes the real part of the argument) and fulfill
SUD, Re(s)>0 Jowe I (8)F(s)ds < oc. That is H,(s,C™*™) contains all asymptotically
stable transfer functions G(s) that are strictly proper (D = 0 in (1)),

¢ The Hardy space - a frequency-domain space - H,, = H.(s,("™*") consists of all
matrix functions F'(s) € C™*" of a complex parameter s which are analytic in the open
right half plane (that is Re(s) > 0) and fulfill 6[F(s)} < oo VRe(s) > 0 where (.)
denotes the maximal singular value. That is, Hy(s,C™*") contains all asymptotically
stable transfer functions G(s). :
L.(L,) contains H.(H,) and represent functions F(s) € C™*" that are bounded on

the jw-axis and proper (strictly proper), stability is not required for these spaces.

e Besides these frequency-domain spaces the most important normed space in the time
domain is L,(R) where R represents real numbers. L,(R) represents all square inte-
grable scalar functions of time g(t) € R with [|g|3 = [23,[g(t)]*dt < oc. For simplicity
in notation, we will use L, to stand for both, the frequency domain as well as the time
domain space. The exact domain will be clear from the context where it is used.

e The prefix R denotes real-rational elements of the according frequency-domain spaces.
That is, RH; and RH.. denote real rational elements of H, and H respectively.

With the above definitions the following norms can be derived.
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2.2 Hj;-Norm of a System
Definition 2.1 Let the system G:=(A,B,C,0) be stable and strictly proper, then

R e . .
Gl = — Trace|G™(jw)G(jw)|dw

271' -0

L[>
= 5= [ lG]kde

- }_ﬂ I WCHEMIZE (

[SV]
~—

where ||.|r denotes the Froebenius norm of a transfer function. Equivalent time-domain
definitions can be established using Parseval’s theorem.. A very important interpretation of
the 2-norm of a system is given in terms of a measure of the output response of a system hav-
ing white noises as input disturbances. A characterization of the 2-norm in these stochastic

terms can be put as follows.

Definition 2.2 Let the system G:=(A,B,C.0) be asymptotically stable and strictly proper.
Let w be a white-noise disturbance input with unit spectral density S,.(jw) = 1. Then

IGIIz = lim EL=T(¢)=(ty)] | (3)

where £ represents the expectation operator.

A very convenient way to compute the 2-norm of a transfer function is via the observ-
ability grammian W, or the controllability grammian W. making use of the time-domain
definitions of the 2-norm. They are defined as follows.

Definition 2.3 Consider the system G:=(A,B,C,D) with A asymptotically stable, (A,B)
stabilizable and (A,C) observable, then

W, = / T AT TG (4)
4]

W, = / T M BBTeA (5)
4]

Obviously these two matrices can also be computed via a Lyapunov solution. Now the
2_norm of a transfer function can be expressed in terms of W, and W..

Definition 2.4 Let the system G:=(A,B,C,0) be asymptotically stable and strictly proper,
then

Gll; = Trace[BTW, B] (6)

= Trace[C'W'L.CT] (M



2.3 H.-Norm of a System and Some of its Properties
For transfer functions G(s) € H,,, the H,,-norm is defined as follows.

Definition 2.5 Let the system G:=(A,B,C,D) be asymptotically stable, then

IGI2 = sup G (5)G(s)] (3)

s,Re(s)>0

where G*(s) denotes the conjugate complex transpose of G/(s) and A(.) denotes the maximum
eigenvalue of the argument. Unless otherwise srtg;'erd, [|-lc will denote the norm defined on
H.. rather than L.. As the Hardy space defined above is a Banach space, the above
definition can alternatively be stated as,

Definition 2.6 Let the system G:=(A,B,C,D) be asymptotically stable, then

G123 = sup A[G™(jw)G (G, (9)

G|

that is, an actual computation has to be performed on the imaginary axis only. A computa-
tional algorithm to compute the H,, norm - not exactly but as close to the norm as desired
- is due to Boyd [2].

Definition 2.7 Let the system G:=(4,B,C,D) have no poles on the jw-axis and define the
Hamiltonian matrix,

| A+ BR'DTC vBR™'BT |
M=\ _yeTsi¢ AT - CTDRBT (o)

where R = (421 — DTD) and § = (5*] — DDT).

Theorem 2.1 ([2]) Let A be asymptotically stable and v > a(D), then ||Gllx 2 v & M,
has at least one eigenvalue on the imaginary avis.

This theorem provides a convenient way to compute the oo-norm of a system by iterating
on 7. Starting at a large value for v > &(D) the eigenvalues of the associated matrix M., are
computed. If M., has no purely complex eigenvalue, then the chosen v is larger than |G|~
and we can lower y. The iteration terminates when the largest v is found for which M., has
a purely complex eigenvalue. Note that in the case where A is not asymptotically stable but
has no jw-eigenvalue, the above theorem represents a characterization of the L -norm of
the same transfer function.

An equivalent theorem expresses the same condition in terms of certain algebraic Riccati

equations (ARE).

Lemma 2.1 v([47] [57]) Consider a system G:=(A,B,C,D) with A asymptotically stable,
(4,C) observable, (A4,B) controllable and v > 5(D), then the following statements are equiv-
alent:

I
1G]l <7 (11)
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M., has no eigenvalues on the imaginary aris (12)

3. The ARE
[AT + CTDR™'BT]X, + X,[A+ BR™'DTC]+ vX, BR™' BT X, + ~CTS='C =0 (13)

has a unique real positive definite solution X = XT such that A+BR Y DTC+~BTX))
is asymptotically stable.

4. The ARE
[AT + CTDR™'BT]X, + X,[A + BRT'DTC] +* X, BR™'BT Xy + CTST'C =0 (14)
has a unique real positive definite solution X, = XT such that A + BR™YDTC +
~v2 BT X,) is asymptotically stable.

5. The ARE
(A+ BR'DTCIXy + Xy[AT + CTDRT'BT) + 72 X,CT871C X, + BR'BT =0 (15)

has a unique real positive definite solution X3 = XT such that A + (BDT +
v X3CT)STIC is asymptotically stable. '

This theorem is an extension of lemma 2.3 in [47] and equation 5.43 in [57] for the proper
case rather than the strictly proper case. It can be easily derived using the identities
X, = y7'X,, X3 = 4727 and R-'DT = DTS-1. Note that the notion of existence of
a solution to the above ARE's means that the matrices Xj, X, and X3 are bounded; that

is, any matrix norm applied to them is finite.

A similar characterization of the H, -norm was derived by Zhou, Khargonekar and Petersen
(see e. g. [21]) in terms of a Riccati inequality (also termed Quadratic Matrix Inequality or
QMI by Willems [53]). The QMI represents the fundamental tool for the H. -design method
developed by Zhou, Khargonekar and Petersen.

Lemma 2.2 ([21], Lemma 2.2) Consider a system- G:=(A,B,C,D) with A asymptotically
stable and v > (D). (4,B) stabilizable and (C,4) observable, then the following two state-

ments are equivalent:

L.
1Gllee < (16)

9. There exists a real positive definite symmetric matrix Xy such that

~.

(AT +CTDR™ BT X+ Xy[A+ BR'DTC]+ X,BRT'B X, + CT(1 + DR'DT)C <0
, ‘ (17)

POV w1 W

TN Ty



" Because this representation is the basis for a very general approach to the H.-norm bound
control problem [46], the proof is briefly outlined here.

The system considered is of the form G := (A, B,C, D) with A asymptotically stable.
Assume that |G|l < % which implies that R and § as defined above are positive definite.

Now a unitary transformation U7 is applied to the system.

T

where zy and wy are the new output and input vectors (for a complete discussion of
this transformation, see [66]). It can be shown then that this transformation leads to a
strictly proper system Gy := (An, By,Cn.0). Since U is unitary it is easy to show that
1Gll <7 © ||Gxllx < 7. Applying Lemma 5 from Willems ([53]) the desired result fol-
lows immediately using the fact that A is asymptotically stable and a result from Lyapunov
stability theory.

Note the term CT(] + DR™'DT)C can be written as CT(I + DR 'DT)C = ~4*CTS~'(C so
that the above inequality can also be stated in the following form,
(AT + CTDR™'BTIX, + Ny[A + BRT'DTCT+ X,BRT' BTN, +°CTS7IC <0 (18)

From these norm definitions and norm bound characterizations, it can be seen that the
whole concept of Hy is set in the {requency domain. However, there are possible time
domain characterizations of the H, -norm that are useful in many respects.

2.4 A Time-Domain Characterization of the H.-Norm

Definition 2.8 Consider a system G:=(A,B,C,D) with A asymptotically stable, (0) =0
and w(t) € L, then

B BEGL
sup  lim =
wlelle=1 1~ [ wT(t)w(t)dt

R - (20)
w |wllz=1 Hu)l]?.

1115

This is a definition of an operator norm induced by. the 2-norm in the input and output
space, other restrictions on w(t) are possible (see e.g. [65]). Physically this norm can be
interpreted as the ratio of Lj-norms of output vector and input vector (The restriction
||l = 1 can always be achieved by scaling as long as w(t) € Ly). Note that the function
w(t) = weap(jwot) would achieve this norm for some wo and w. However, periodic signals
do not have a finite L,-norm and are therefore excluded from the above. definition. An
important observation concerning this time-domain definition - but with a finite horizon
time - has been made by Boyd [2].[3]. Namely,

Theorem 2.2 Consider a system G:=(A,B,C,D) with A asymptotically stable, z(0) = 0 and
w(t) #0, w(t) € Ly, thenViy; >0,

[T w=ta < HIE /Ot’ w” () (t)dt (21)



Importance of the finite-time cost function (20) is not based on the fact that it represents a
lower bound for the H. -norm, but in its relationship to a cost function to be defined later.
Finally, shown in this section are a few properties of the H.,-norm that are important for
the further development and these are standard results of the operator-norm definition (see
e.g. [65]). Consider two transfer functions G and H,

[Gll 20, |GGl = 0 iff G=0

1aGll = lallGlix

16+ Hile < Gl + 1]

IGH e < 1G]~ 171

2.5 Signals with Bounded Power and Bounded Spectrum

This section reviews some of the concepts important beh!nd the approach of Doyle, Zhou and
Khargonekar to the mixed H;/H.,-control. The signals considered are time-domain signals
that can be vectors in general. For this purpose, let us define the following functions.

Definition 2.9 The cross-correlation Ru.(7) between two time-domain signals w and v is
defined as

4

I .
R..(7)= lim — ! u(t + el (r)dt (2

=2ty Sy

Q]
Q]
~—

if it exvists and is finite V7.

The Fourier transform of R,.(7) is called the cross-power spectral density S,,(jw) and is

defined as follows.

Definition 2.10 The cross-power spectral density Sy, (jw) between two time-domain signals

u and v is defined as

i = [ Rulne o

Remarks:

1. The autocorrelation as well as the power spectral density of a signal u(t) are defined

accordingly.

2. It can be shown that

R.(r) = Rl(-7)20 (24)
Ru{r) = RL(-7) (25)
Swljw) = SL(jw) 20 (26)
Swljw) . = SLGw) (27)

Now two sets of signals with bounded power and bounded spectrum are defined in the spirit

of Doyle, Zhou and Bodenheimer ([14]. [15]).

i noromnrt i
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Consider a set of vector-valued functions u(t) that satisfy
BP;: u(t) is finite for all t,
BP,: R,.(7) exists and is finite for all 7

BPs: S,.(jw) exists (not necessarily bounded)

Now the following two sets are defined.

Definition 2.11 ([14]) The set of vector valued functions u(t) with bounded power will be
denoted by P,

P = {u(t): u(t) satisfies BPy,BP, and BPs}

with the semi-norm

1

|z = :}TLT??} ul (t)u(t)dt
= Trace{R,..(0)}
1 o
= — Tr‘zzce{”w Jw) pdw (28)

defined on the set P.
Similarly the set of all signals with bounded spectrum is defined as follows.

Definition 2.12 ([14]) The set of vector-valued functzom u(t) € P with bounded spectrum
will be denoted [)J S
S = {u(t) : u(t) € P |Suullx < ¢}
with the semi-norm
H”Hi’ = H SuulJw) ““O (29)

defined on the set S.

Remarks:

I. Note that all L,-signals (in the time domain) have zero power, so do all time limited
signals.

Q]

White noise is not a member of & as its auto-correlation is infinite at 7 = 0. White
noise in & is comparable to periodic functions in L.

3. Let the prefix B denote the closed unit_ball, that is BP denotes the set of signals
with bounded power and semi power norm llu| < 1, accordingly for BS.

4. Note also that S C P.
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2.6 Some Game Theoretical Results

In this section some important results from game theory are reviewed. They are important
for the interpretation of the proposed Hy/Hx-cost function and for the numerical algorithm
to compute the desired controller.

Consider a min-max problem of the following form,

J(do, o) = ingUP J(¢.4) (30)
v

where ¢ represents the optimal minimizing strategy and g the optimal maximizing strategy
in this game. Without any assumptions on concavity or convexity, the following results can
be obtained,

sup igf J(o.0) < il(})f sup J (¢, ¥) (31)
WP s

This is easily verified and is a standard result in game theory. Another important concept
in game theory is that of a ’saddle point strategy’ which - in mathematical terms - can be

stated as follows.
Definition 2.13 A pair og and vy is called a saddle point strategy of the inf-sup problem
inf, sup, J(o.v")

](650 t,’") < ](G)O o) < ](65, ll’o) VQ ed and Vy € |/ (32)

If a saddle point exists, then the ’inf” and 'sup’ operators can be interchanged and 'inf sup’
is equivalent to 'sup inf’: but the reverse i1s not necessarily true. However, in general such a
point does not always exist. Various necessary conditions have been established to guarantee
the existence of such a point, but most ot these conditions assume convexity of J(¢,¥) in
o and concavity of J(@, ) in ¢ as well as continuity and convex compactness of the spaces
® and . In many cases, however, these assumptions are very restrictive and cannot be
satisfied so that the existence of a saddle point cannot be guaranteed.

In general if one obtains the solution of a min-max problem via some method, it has to
be verified in each case individually whether or not these solutions fulfill the definition of a
saddle point as stated in definition 2.13. The importance of a saddle point strategy can be
appreciated by looking at it as a true, simultaneous minimization and maximization while
min-max or max-min always implies a certain order and thus an advantage/disadvantage to
either the minimizer or the maximizer. Other important concepts such as ‘c-optimality’ or
‘saddle point strategies in equilibrium’ are not reviewed here. For a brief review see [33] and
[29].

It is recognized that most min-max problems do not have optimal solutions that represent a
saddle point. In a paper by Salmon ([45]), he has given an approach to the min-max problem
from a different point of view. His objective was to find a solution to the following problem.

Definition 2.14 ([45]) Let J(¢.v') be a scalar-valued function that is non-negative, con-
tinuous in ¥ € U and continuous in ¢ € ¢ where ¥ and & represent closed and bounded
domains. Let ¢ denote the minimizing strategy of ¢ and define the following min-maz

problem,

4 * ) = mi h, 3.
max J(¢", ¢') min max J(¢, ) (33)
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for which he found an iterative algorithm that is guaranteed to converge to
min,eq Maxyey J (@, 1) using a sequence of successive minimization and maximization steps
only (under certain assumptions). His algorithm and some of its properties are stated here
without proof, a complete discussion can be found in [45].

Assumptions:

1. Continuity requirements: J(¢, ), 5—2—‘{‘](9!5,2;‘))} and 33;7{‘](45, )} are continuous in ¢

and .

W

For each ¥ € W there is an optimal ¢°(3») € ® such that J(¢°(z),%) = J°(¥) where
J?(w) is the minimal value achievable by ¢. This means that the minimizer can generate
the optimal minimizing strategy for any .

3. Let gradyJ(¢.v') = 0 and let the ¢, satisfying this condition be denoted by é and .
Then it is assumed that J(¢,v) = Jo(¥).

Salmon’s algorithm:

1. Initialization:
Choose an initial set Uy = {v10. Y20, ... }-

2. The n'*-iteration:
Perform: mingeq {max,ew,_, J(&. 1)}
Let ¢™ denote this minimizing strategy.
Define J* = max, ¢y, _, J(o", ¥).
Perform: max,.¢y {J(0", ")}
Let ¢'™ denote this maximizing strategy.

M o_

Define JM = J(o™, y™).
Define ¥, = ¥,_; U {¢"}.

3. 1f |JM — J7| < ¢ then stop
Otherwise repeat step 2.

Remarks:

1. Salmon has shown in [45] that
J™ < mingee maxyey J(@, 1) < JM for all i =1,2,..

[AV]

If above assumptions are satisfied, then the sequences {J} and {JM} converge to
Min,ee Maxyeq J (4, ¢) in a finite number of iterations.

3. If there are no min-max strategies in the interior of the correponding domains, then
the algorithm will converge to min-max strategies on the boundary of these domains.

4. Pure continuity of J{¢, ") is sufficient to show that J7* is a monotonically increasing
function of /. This is based on the fact that we minimize the objective function over

an increasing set W,.
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5. This algorithm does not guarantee convergence to a saddle point. Instead, it converges
to a min-max value as defined in the definition 2.14. Also, the resulting min-max value
as well as the resulting min- and max-strategies depend on the choice of the initial set
P, (if no global minimization and maximization algorithms are applied). If J(¢.¢)
is convex/concave in its parameters ¢ and ¢ respectively, then the solution will be
unique; if the min-max problem does in addition have a saddle poirt solution then this
algorithm will converge towards this point as in this case min-max equals max-min. If
convexity/concavity is not given, this algorithm might converge to local saddle point
strategies (if saddle point strategies exist at all).

3 H.-Analysis and Synthesis

The whole concept of H -analysis is based on the *Small Gain Theorem’ and the represen-
tation of a system with its uncertainties in a special form called the Q-parametrization (or
Youla parametrization). The synthesis on the other side can be approached via factorization
methods in the frequency domain or a game theoretical approach. Before we illustrate this
concept, we will review how one can use H.-norm formulation to include system uncertain-
ties into the analysis and design.

3.1 Uncertainty Representation and the Small Gain Theorem

In terms of notation, this section will follow the notation of [63]. Let A, and 3y denote
multiplicative system perturbations in the input and output respectively, and A, the additive
system uncertainties. The perturbed transfer functions can be represented as

G(s) = Gol($)[I + Au(s)] (34)
orT )

Gls) = [ + Ao(s)]Gols) (35)
or

G(s) = Gols) + Au(s) (36)

where Go(s) represents the nominal system and the disturbances A are norm bounded in
the H.-sense; that is, [[A(,llx < 7. Note that possible uncertainties contained in this repre-
sentation include parametric model uncertainties, non parametric plant uncertainties (such
as transfer function perturbations due to identification errors), or neglected nonlinearities to
name a few. Note also that the norm assumption implies that the disturbances are required

to be stable, e.g. A() € RH. Now we can rewrite this system as follows.

) (37)
) (38)

s

2(s) = M(s)uw(
w(s) = A(s)z(

»n

where A(s) contains all the uncertainties and M (s) represents the undisturbed system model.
At this point, we do have to distinguish between ‘structured’ and ‘unstructured’ uncertain-
ties, implying that the A(s) block has a structure that is known (i.e. structured) or, that
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nothing but the norm bound is known and there is no need to define its structure (1.e. un-
structured). The first kind of uncertainties leads to p-synthesis while the second type of
uncertainties leads to the H. -framework. Let us assume that [[A(s)]|< < 1 (this can always
be achieved by scaling).

Equations (37) and (38) represent a ‘feedback’ connection of M (s) and A(s) to which we

now can apply the Small Gain Theorem. For this purpose consider the following system
H(s) = M(s)wls) +r(s)] (39)
w(s) = A(s)z(s) (40)

where r(s) represents an auxiliary signal. Then
J()lls = [AL()(s) + MS)A()z(s)]o

1M (s)r(s)]l2 + 1M (s)A(s)z(s)]l2
M ()]s ()2 + 1M () llse 1) e [12(8)]]2

<
<

Thus, the following identity is true.

o | M (5)]|oo
()]l < L= [[M(5)]lso 1A(5) ]

[Ir{s)l2

Now the Small Gain Theorem can be stated as follows.

Theorem 3.1 Consider the feedback system formed by M(s) and A(s) with M(s) € Hy
and A(s) € Hy, . then we have the following statement,
UM () s 1A (8)]Joe < | = The closed loop system is stable (of bounded gain)".

It should be noted that the Small Gain Theorem is valid for other transfer function norms as
well since the main result is that the system has ‘bounded gain’ in the closed-loop feedback
configuration. Note also that this theorem does not give an “if and only if’ relation; hence it
may be conservative. This conservatism can in fact be removed using the u-framework.

3.2 The General Setup for H.-Analysis and Synthesis

The frequency dependence of signals and transfer functions is omitted throughout this section
for ease of notation. It has to be kept in mind, however, that all considered transfer functions
are real, rational functions of s (except for matrices in the state-space realization). Consider
now a plant description in the frequency domain as follows.

. z _ w _ P11 P‘-z w )
o ()l (B R w

e The input vector w contains the exogenous inputs which include signals such as dis-
turbance inputs or noises acting on the plant from ‘outside’, fictitious noise inputs
to achieve certain design specifications, actuator or sensor noises as well as command

Remarks:

inputs.



o The input vector u is the control input and represents all inputs that can be used to
control the plant.

e The output vector z contains all variables that are to be regulated. That is, it contains
outputs that are fed back through a A-block to the input w. In general one would like
to keep these signals as 'small’ as possible. A sample of the elements of z consists of
variables such as errors between a real output and its commanded value, system states,
components of the measurement output y or specific control inputs u, as well as other
linear combination of these signals. Weighting factor can be frequency dependent or
pure scaling. Other fictitious A-blocks between outputs z; and w can be formulated
to incorporate robust performance. (Note: Some weighting functions or additional
A-blocks for robust performance may already be imbedded into the above model).

e The output vector y contains all variables that are measurable and thus accessible to
the controller (i.e. sensor outputs).

It is very important to clearly identify the signals used in the optimization model for the
H..-framework. Let us now assume that a state-space representation of the above system pX
is given as follows.
#(t) = Az(t) + Biw(t) + Bau(i)
() = Ce(t) + Daw(t) + Diau(t) (42)
y(t) = Cax(t) 4+ Daro(t) + Dopu(t)

so that a state-space representation of each component P;; is given by

Pio= (A, B.Ch. D)
)

(

PI‘Z = (-*’L Bszh Ds,
(
(

P (43)

Py = )
P22 = .4, B’Zs C‘Za D22)

The general objective in the H..-methodology is to find a stabilizing controller A'(s) with
u(s) = K(s)y(s) that minimizes the H.-norm of the transfer function T,u(s) from w(s) to
z(s) (or to keep this norm below a certain prespecified value for robust stability in the face
of the uncertainties A).

Note that in general the open-loop system P(s) may be stable or unstable. In the case
of an open-loop system, the first step is to find all the controllers that will stabilize the
closed-loop system and then look for one that satisfies the H..-bound constraint.

It is easily verified that the closed-loop transfer function T%,(s) with the controller K(s)

in place can be written as

T..(s) = F(P.K) = Py + Pio(1 = P ) 7' Py (44)

3.3 Q-parametrization and All Stabilizing Controllers

A complete treatment of this problem would require extensive use of factorization methods
whose details are omitted Lere for brievety. Only the major steps that lead to the Youla (Q-)
parametrization will be outlined. Before we do that, the notion of stabilizability of F(P, i)

has to be defined.
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Definition 3.1 F(P, K) is stabilizable if there is a N for which F(P, K') is internally stable.
If such a K exists we will say that I\ stabilizes P.

For a discussion of internal stability in the sense of Desoer and Chen (see e.g. Francis [62],
[63] or [57]). Note that stabilizability of P does not necessarily means that P;; has to be
stable, however, if P, contains unstable modes then these modes have to be observable
through y and controllable through u (i.e. the controller has to be able to stabilize these
unstable modes). This implies that (Cz, A) needs to be observable and (A, B;) needs to be
controllable. These are taken as standard assumptions in the H-literature.

The following theorem shows that it suffices to concentrate on Py, only, rather than on
the whole P.

Lemma 3.1 ([62]) Let Py = (A4, By, Cy, Dy3) with (A, By) controllable and (A, C) observ-
able, and furthermore K and P,; are proper transfer functions. Then K stabilizes P off K
.St(Lbili:éi.S PZ?‘ »

Before we proceed, let’s staté some results obtained from factorization, namely right and left

coprime factorizations and doubly coprime factorizations.

Definition 3.2 ([63]) Consider two transfer function matrices F,G € RHx where F and
G have the same number of columns, then F and G arve right-coprime over RH tff there
exist XY € RH.., such that '

XF+YG =1, (45)

equivalently, for the left coprime factorization,

Definition 3.3 ([62]) Consider two transfer function matrices F,G € RHx where I and
G have the same number of rows, then F and G arve left-coprime over RH, iff there crist
X.Y € RH., such that

FX+GY =1 (46)

These two identities are also called the Bezout or Diophantine equations. Note that state
space realizations of coprime factors are readily available but are not included here, see [62],
[63]. Finally we define the doubly coprime factorization.

Lemma 3.2 ([62]) For cach proper real-rational matrix G there exist M, M,N,N, X, X,
Y and Y (all of these matrices in RH.) such that:

G=NM"1=M"'N (47)

X =Y M Y I 0
(—.«\7 M )(\ ,\"):(0 ]) (48)

and
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With these factorizations defined, their implications can now be addressed. Let G be a
proper real rational transfer function, then there are factorizations G = NM ™! and G =
¥M~'N where N and M are right coprime (in RH,) and N and M are left coprime (in
RH..). A doubly coprime factorization finally implies right coprimeness of N and M and
left coprimeness of N and M. Let right and left coprime factorizations be abbreviated by

ref and lcf respectively. ,
“The following theorem establishes the connection between the described factorizations

with the original H.. -problem.

Theorem 3.2 ([62]) Let Ko be a stabilizing controller and define

Py = NM7'=M"'N (49)
Ko = UpVqt =Vl (50)

where M, M N, N Uy, Uy Vy and vV, represent lef and rcf of Py, and Ky then the following
statements are equivalent: '

1. N\ stabilizes P

. -1
2. (‘U [°> € RH ...

N I
% o)
3. ( Y ) € RH..
Furthermore. the set of all proper stabilizing controllers K is given by:
K o= Ko+ V5'QU + V' NQ)'V (51)
= (Lo + MQ)(Ve + NQ)™! (52)

with Q € RH. such that (I + Vo 'NQ) (o) is invertible ( (.)(oc) denotes the high-frequency
gain. i.e. value of the transfer function as s — ).

[t is easy to show now that the closed-loop transfer function can be represented as

F(P,K) = Pu+ Pnll — PpK)7 ' Py
= F(T,Q)
= T+ T1:QTn (53)

This is the key result of Youla (Q-) parametrization. Now the original problem is to find a

Q such that _
T + ThuQTn|w <y, QE RH. (54)

Remarks:

I. Note that Q is - in general - a transfer function that is restricted to be in RH. That
is, it is required to be proper and asymptotically stable. Note also that F(T,Q) is

affine in Q.
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o

(I +V5'VQ)(>) invertible is equivalent to having (I + D2:Q(2c)) invertible. This
condition is termed ‘well posedness’ (see e.g. [61]). It reflects the necessity that for
non strictly proper controllers the problem is well posed Vs.

3. The factorization results used in this presentation are useful as they nicely reflect an
‘if and only if’ condition for the stabilizability of the system. That is, stability of
(I — P; )71 can be expressed in terms of the stability of the matrix

S A
[ h 1)
which in turn can be expressed in terms of the above factorizations (for a nice derivation
of this connection, see section 6.4.2 of [63]).

1. A similar theorem can be established using coprime factorizations of Py and .

5. If F(T,Q) is minimized over Q then this problem is equivalent to the model matching
problem (match T,,QTy; as close to the model Ty, as possible).

6. Under various assumptions on 7}, this problem represents the so called 1-block, 2-block
or 4-block problem.

7. Under certain assumptions on 7T;; the problem can be transformed into the Hankel
Approximation Problem (also called Nehari Extension Problem).

As Q is restricted to be stable and proper. this represents an infinite dimensional opti-
mization problem. Bovd ([l]) used the above parametrization in Q with a prespecified
order (large!) to approximate this problem.

04

2], [63] or [57] and for a thorough mathematical

I

9. For a nice introduction into H see [2
treatment of this problem, see e.g. [61

3.4 State-Space Formulae for the H,-Bound Problem

Instead of dwelling into the mathematics involved in the solution of the most general case (i.e.
the 4-block problem), we will summarize key results that give precise state-space formulae for
which the H. —bound problem can be solved. One of the important results is that all strictly
proper stabilizing controllers have the state-space realization of an observer. This fact can
be shown using state-space realization of the coprime factors defined above and assembling a
complete realization of the controller A'(s). This structural knowledge has been exploited by
Doyle, Glover, Khargonekar, Francis yielding the well-known DGKF-method (see [13],[63]).
At this point two different approaches have been considered; one relies on two algebraic
Riccati equations and a coupling condition (as pursued by Doyle, Glover, Khargonekar,
Francis) which form the basis for most solution of the H, —bound problem. A summary
of this approach can be found in the 1988 paper of Glover and Doyle [16]. The proof to
this approach relies heavily on factorization methods, but it also has a nice interpretation in
terms of the Youla parametrization and game theoretical results. The other approach taken
by Khargonekar and Zhou [21] as well as Sampei and Nakamichi [46] is based on two Riccati

inequalities.
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3.4.1 The DGKF Results
Let us first consider the standard assumptions and state the problem formulation of the
DGKF paper [13]. The system under consideration has the state-space realization given for

the system ¥ (see (42)) with w(t) € R™, w(t) € R™, =(t) € RP', y(t) € R, z(t) € R™.
With the following additional assumptions (often termed the standard H . -assumptions):

e Al. (4, B,) controllable and (C, A) stabilizable
o A2. rank(Dy;) = my, rank(Dg) = p2

o A3. DIQI ( 9),

Du=(0 1)

Dyn Din
Dy = -
! ( Din Dz

where Dyy22 has m; rows and p, columns
o A4. D22 =0

s A5. rank( A= el B ) =n+m; Vw€R

an D,
o AB. ra.nAk( A —Cjw‘[ g:l ) =n+p; VWweR

Remarks:

o Assumption Al is required to stabilize a possibly unstable plant P; equivalently this
is necessary for the existence of a stabilizing controller.

o Assumption A2 is a sufficient condition for the existence of a proper controller.

o Assumption A3 can always be achieved by a preliminary scaling and a unitary trans-
formation as long as A2 is satisfied.

o Assumption Ad Dyy # 0 can be reincorporated into the controller after that controller
is designed for Dy; = 0. An alternative route to this ‘reincorporation’ is given by
vet another preliminary unitary transformation as suggested by Stoorvogel [66] that

results in a system with Dy = 0.
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e Assumptions A5 and A6 require that the transfer functions from v to = and from w to y
have no invariant zeros on the jw—axis. One interpretation of these conditions can be
traced back to the Youla parametrization (see e.g. [17]): Toy (T, respectively) is right
(left respectively) invertible in RL., iff A5 (A6 respectively) is satisfied. This means
that this approach can be converted into a Nehari extension problem. Another (state-
space) interpretation for these requirements is given by the fact that the two ARE’s to
be defined have a solution if the associated Hamiltonian has no jw-eigenvalues which
in turn is given only if A5 and A6 are satisfied.

With the above assumptions, the existence theorem can be clearly stated.
Let’s define

Dx*'—“(Du DIZ)- D*I:(g:>

' .2
R= DDI.—(’é"“ ) R=D..DT, (’éﬂ* 8)

;
B=(B B ). ( )

Finally let p(.) denote the spectlal radius (maximum eigenvalue) of its argument, then

Theorem 3.3 ([13], [16], [63]) Consider a system X as defined above wuth the assump-
tions Al - A6 satisfied. then there crists an internal stabilizing controller K(s) such that
F(P, N)||x < v if and only if

1. i > Infll'{é'[l)““. D“]-z].d'[DlTl“.D’lTllJ}
2. there is a real solution Xoo = X1 >0 to the ARE

Nald = BRTIDLC) + (A = BRT'DLC)T N
~ X BRBT X+ CT(I = DR DGy = 0 (55)

3. there is a real solution Y, = YfT >0 to the ARF

VlA = BiDTR'C)T + (4 = BIDLRT'CY.,
—YCTR'CY, + B,(I - DL|R 1D.,)BT_O (56)

4. p(XoYs) <7

A state-space realization for the controller is given in the references cited with this theorem.
Let us turn to some interpretations:

I. The ARE (55) is frequently called the Generalized Control Algebraic Riccati Equation
(GCARE) as X, is necessary for the existence of a state feedback controller and thus
the existence of the feedback gain matrix from the controller to the plant. The ARE
(56) on the other hand is frequently called the Generalized Filter Algebraic Riccati
Equation (GFARE) as Y is necessary for the existence of an observer-based controller
in the case of output feedback which then involves an estimation (Luenberger observer)
to reconstruct the states that are not directly available from y. Condition 4 finally
reflects the H..-bound (see [17]).
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[ ]

If A3 is not satisfied, this scheme breaks down; this problem is called the singular H,
problem which has been tackled by Stoorvogel in his dissertation ([66]).

3. The derived controller is not unique despite the fact that X, and Y, are unique.
The *standard’ realization of the controller given in literature is one of many if such a
controller exists. If, however, one of the above conditions is violated then there is no
stabilizing controller that achieves the H-bound. This is the most significant result
of this formulation.

4. Also. if a controller is designed using this method for a prespecified v, nothing can be
said about what the actual H.-norm of the closed loop system is, only that the bound

is satisfied.

5. The proof relies heavily on frequency domain factorization ideas, a complete proof can
be found in [17].

6. The design procedure depends on whether only a H_..-bound solution is desired or if
the H..-norm of the closed loop system is actually to be minimized. In the first case,
only the stated conditions have to checked for a given 5. In the latter case we have to
iterate on + with decreasing values of v until one of the above conditions is violated.

i

:\J

The controller order is that of the plant so that possible frequency weighting will
increase the order of the controller (i.e. plant order plus the sum of the order of all the
frequency weights!).

3.4.2 The Zhou and Khargonekar Results

As mentioned earlier, the authors examined the H.,-bound problem using the Quadratic
Matrix Inequality (17). Their approach is appealing since it does not impose as many re-
strictions as the DGKF algorithm. Also, the proof uses mostly algebraic methods and is
easier to follow. However, the design procedure involves another tuning parameter in addi-
tion to 7. The presentation here mainly follows the paper by Sampai, Mita and Nakamichi
[46]. Their results in [46] are an extension of the results in [21] where the state feedback case
is treated. Let us look at the assumptions made in this approach.

The system under consideration is the state-space realization of the system 3 (see (42)) with
w(t) € R™, u(t) € R™, =(t) € R™, y(t) € R*, z(t) € R" and the additional assumptions:

A1l (4, B,) controllable and (C;, A) observable
A2 Dy =0

These are the only restrictions on the system model. Al has already been justified and A2 has
already been identified as not being restrictive at all. Clearly this approach can accommodate
a far wider class of problems where only observability and controllability of the above stated
matrices have to be satisfied; these are standard assumption in any traditional LQ-design.
The approach is split into two categories: development of necessary and sufficient conditions
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for the strictly proper controller case and its extension to the proper case.

Some results are summarized below. For the state feedback case Khargonekar and Zhou
(21] showed when C, = I, Dy, = 0 and Dy = 0 - the state-feedback configuration - the
optimal state feedback gain matrix F* can be characterized in terms of a certain ARE (eqn.
3.3 in [21]). Theorem 3.5 in this reference finally presents a state-space realization of the
state-feedback gain matrix F that achieves the desired H.-bound. With the above results,
the main theorem of [16] can be stated as follows, where G denotes the closed-loop system
transfer function matrix between w and =.

Theorem 3.4 ([46], Theorem 1, Corollary 1) Denote R =(y*-DI, D)) and S=(y2-
Dy DL). There is a strictly proper controller which stabilizes the system un der consideration

and satisfies ||G.||~. < if and only if the following conditions are satisfied:

[, R>0

2. There exists a P = PT >0 and a Q = QT > 0 satisfying the following conditions:
a) There cxists a matricv F such that

PlA+ B,F + BURT'DN(C + DuF) 4 [A+ BoF + BIRT' DI (CL+ D F))' P
YPBRT'BTP +(Cy + DuF) (I + DL R™'DINC + DL F)T <0 (57)

b) Therc exists a matriv N such that

QA+ KC, + CTS D (B + K D)+ [A+ KCy + (TS Du(By+ KDa)']'Q
H(By + KDy )(I + DLS7'Dy ) (B + KDy)' <0 (58)

c) p(QP) < »?

If such matrices evist. then a parametrization of a strictly proper controller is given b
. ! ) )

C(ty = AC(t) + Bylt)
u(t) = Cct)

where the matrices A, B and C are defined by equations (8)-(12) in Corollary 1 of [{6].

The extension to the proper case is performed by finding a matrix D, the high frequency
gain of the proper controller, that maintains the H..-bound property of the strictly proper
controller designed for the system. Theorem 2 and Algorithm 1 in [46] give necessary and
sufficient conditions for the existence of such a proper controller as well as a parametrization
and a computational "guideline’ for the actual computation of the controller. The matrices
I and & in above theorem can be computed using Zhou and Khargonekar’s procedure in
[21]. This computation involves the additional tuning parameter mentioned above.



4 Current Approaches in Mixed H,/H.-Control

As mentioned in the introduction, the Hy-framework only provides robust stability. Ro-
bust performance can be incorporated by introducing a “fictitious’ performance A-blocks
or frequency weighting. System inputs and outputs that are associated with system uncer-
tainties and other noises entering the system cannot be modeled independently in a pure
H..-framework. If mixed strategies are desired, i.e. a Hj-criterion for some criterion outputs
=, with respect to some disturbance inputs w; and at the same time a H.-criterion for some
. with respect to some w,,, then we arrive at the problem of mixed H,/H.-control. The
structural setup for this problem has to be extended to include the new inputs and outputs.
The most general description of this problem can be put in the following form:

W) = Ax(t) + Buwa(t) + Bawa(t) + Bsu(t)
T/ : 2(t) = Ca(t) + D11w2( )+ D12w>u(t) + Dysu(t) (59)
’ () = C Sty + thwz(t) + Dg-)ll.’,, (4) + ngu(t)
y(t) = Csa(t) + Daywa(t) + Dagwoc(t) + Dasu(t)

Note, that this systemn description is very general, it can include external disturbances enter-
ing the system (modeled by w,), disturbances due to system uncertainties (modeled by w.),
an output vector zs representing the output for the feedback closure via the uncertainty
system A(s) and an output vector z, representing a set of signals to which the H;-objective
1s apphecl It is obvious that this kind of system assumptions allows a more realistic system
model than that assumed for pure H.. problems. A feedback controller K'(s) is given by
u{s) = N(s)y(s). Design objectives are then expressed in terms of a H.-criterion from
., to z~ for robust stability and an H,-objective for the transfer function from w; to z,.
These design objectives, however, do not take into account cross-couplings from w; to =y
and from wy, to . Due to these cross-couplings a general mixed H,/H, -strategy has yet

to be deﬁned.

At this point, different design approaches have to be considered separately. They vary in
basic system assumptions and theoretical strategy. However, connections have been made
" recently and they are stated below. In particular, two important subproblems have been
investigated recently, namely the two *disturbance input/one criterion output’ case and the
‘one disturbance input/two criterion output’ case.

Iu the following subsections, we adopt the notation of the according reference for ease of
comparison. Thus, matrices in these subsections might have a different meaning than those
defined in other sections. Furthermore the explicit time dependency of signals is suppressed
in most formula. If variables are considered in the frequency-domain, they will be shown

explicitly.

4.1 The Bernstein and Haddad Approach

Researchers Bernstein and Haddad addressed one of the subproblems stated above ([4], [5],
[9]). Note that an early paper [4] addressed a slightly different problem than the later papers,

L T I O I
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i.e. the direct feedthrough matrix E. from w to z. was assumed to be zero in [4]. The
idea however is the same as in their later papers, which are only an extension to the case
of a proper transfer function between w and z,(with more complicated Riccati equations).
To facilitate this presentation, let us consider the case of a strictly proper transfer function
between w and z.. as assumed in [4]. The system under consideration is’

r = Arx+ Dyw + Bu
BH ) 2 = L+ Fau
V2o 2o = Eiaot + Eau (60)
y = Cx+ Dy
with a strictly proper controller C(s) of the same order as the plant and it is defined as
TR .‘1.3‘3 = -ACIC + ch
C(a) : { « = C.r, (61)

along with the following assumptions and notation,
1) (A, B) and (A, D) are controllable:
2) (C,A) and (Fy...4) are observable; -

3) ETE, =0, ETE =R, EIE,=R, 20;

4) ET_Fpoe = 0. ELl _Eino = Rix:  EiEane = Rouc:

X e

5 DD =0, D,DT =V D, DI =V, >0;

S ‘/’,-l 0 . - _ R}N 0 D _ Rl 0
ot ‘( 0 BJ;BZ)' R*‘( 0 CTRyC. ) 'R‘< 0 CCTRQCC)

This approach is very appealing as it deals with one disturbance input vector w plays a dual
role depending on which output vector and, thus, which design objective is considered.

Let the closed-loop system - with the controller in place - be written in the following form,

¥ = Ai+Dw (62)
T = FIL (64)

where & contains the plant and controller states, the above state model matrices can easily
be computed from (60) and (61). Let furthermore the closed-loop transfer function from w

to zo, be denoted by H(s). ) . .
H(s)= Ex(sI —A)™'D (65)

then the design objectives can be stated as_follows,

i) Find a strictly proper controller such that the closed-loop system from w to z is

asymptotically stable, and
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i) the closed-loop transfer function between w and z satisfies
14 (s)]l <7 (66)
where 5 is a prespecified constant, and

iii) the controller minimizes the cost function

J(A, B..C.) = lim E[ETETE?]

i

= lim £[#T Rz (67)

t—oC

Remarks:
o For the design objective ii) the disturbance is assumed to be w € Ls.
o In iii) it is assumed that w is white gaussian noise with unit spectral density.
e In iii) &£ denotes the expectation operator.

The solution approach relies on the formulation of an auxiliary problem for the H,-problem
that *automatically® enforces the H. -constraint in (66). To do that let us examine the cost
function J(A., B..C.) in more details. It represents simply a weighted steady-state state
covariance responses of the closed-loop system to the disturbances w being white noises and
having a unit power spectral density matrix. [t follows from a standard result that

J(A.. B.,C.) = Trace{QR} (68)

where @ is the positive definite solution of the Lyapunov equation

AQ+QAT+V =0 (69)

where A is asymptotically stable. Now we define the following Riccati equation

AQ+ QAT +777QRQ+V =0 (70)

It can be verified that, if a solution Q for the ARE in (70) exists - assuming the associated
A is asymptotically stable and the above controllability assumption -, then this implies
|H(s)||oe < and Q — Q >0 (Lemma 2.1 in [4]). These results motivate the definition of a
new cost function that incorporates the H_-bound into the H,-optimization. This new cost
function defined by Bernstein and Haddad is defined in terms of Q instead of Q. Namely,

J(A., B.,C., Q) = Trace{QR) (71)

[t can be easily verified that

J(A B, Ce, Q) 2 J(Ac, B, Co) (72)

From Q — Q > 0 it is obvious that the new cost function represents an upper limit for
the 2-norm of the closed-loop system so that the whole setup considered by Bernstein and
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Haddad is suboptimal with respect to the 2-norm minimization as well as In the H__ -sense
(since only a bound for the norm ||H(s)|| is considered).
The new auxiliary problem can now be described as “Minimize the new cost function
J(A,, B.,C., Q) subject to (70)". '

The further development is based on founmg the Lagrangian function for the auxiliary
optimization problem by appending the ARE (70) to the cost function J(A., B., ,Ce, Q).
This yields

L(A B.,Co. Q. M) = Trace {QR + [AQ + QA+ QR Q+ VIM} (73

Derivation of this Lagrangian with respect to @, A, B.,C; and M yields the final result.
The lemma stated below is taken from [56] and its implications will be discussed later.

Lemma 4.1 ([56], Lemma 1) Let’s consider a plant given by (61) and the according as-
sumptions slated above. Let v be a prespecified positive constant. Furthermore, let C'(s) be

a strictly proper stabiizing (‘r)nhol/m of the same order as the plant that minimizes the cost
fu./z(‘hon J(A B Co. Q) subject to ||H (s H\ < 4. Then such a controller exists if and only
if there exist real symmelric matrices @ > 0. P > 0 and Q > 0 satisfying:

0 = AQ+QAT + Q[ R - CTVTCIQ (74)
0 = [A+77HQ = Q)Rix)"P+ PlA+77HQ — Q)Rix] + E] Er — CI RoC (T5)
0 = [4 + 77 2QR1 + BCJOQ + QA+ v *QRioe + BC)T

T2Q[Rix + CT Ry CJQ + QCTVICQ (76)
4. = .4 - B.C'+ BC. +77 QR (77)
B. = QCTv,! | (78)
0 = Ry(.+B"P++72R,..C.QP (79)

_(e+0Q @ .
- (7%8)

Remarks:

I. Note that in the original paper of Bernstein and Haddad ([4]) these conditions were
labeled "necessary’. In a very recent paper by Yeh, Banda and Chang ([56]), it has
been shown that these conditions are also sufficient (see Corollary 1.1 and Theorem 2
in [56]). This justifies the “if and only if” relation in above lemma.

2. The above theory has also been extended to the low-order strictly proper controller
case which adds yet another Lyapunov-type function to the above conditions. This
additional function is also coupled with the other equations (see Theorem 6.1 in [4]).

3. Presently only numerical methods are available to solve the system of equations of
Lemma 4.1 (see e.g. [10] or [11]) - under the assumption that such a solution exists.
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4.2 The Doyle, Zhou and Bodenheimer Approach

Researchers Doyle, Zhou and Bodenheimer have considered the dual problem to that of
Bernstein and Haddad ([14], [15]). The problem is dual with respect to the system assump-
tions as well as the necessary and sufficient conditions derived for their problem. The system
under consideration is

Ax + Bo‘lUO + Bl wy + lel.
C'll' + DI'ZU (81)
y = Cax+ Dyowo + Darin

.
|

[

DZB
22/2(- .

with a strictly proper full-order controller A'(s)

K(s) :{ te = Ao —Ly (82)

u Forx,

Analysis of a System with Two Disturbance Inputs

In this presentation, only an outline of the approach and some of the important con-
clusions are described. Necessary and sufficient conditions can be derived using Bernstein
‘and Haddad's results. Let Gy denote the transfer function from wg to z and G the transfer
function from w, to z. The cost function is now defined by the output power |z]|%:

J= sup  |z|Ib | (33)
lL’QEBS,lU)GB’p

Note that the white noise input wy constitutes the worst-case disturbance for signals with
bounded spectrum, despite the fact that it is not in BP and hence not in S as it does not
have bounded power. However, the authors of this paper assume that the results derived
exist in the limit for signals in BS — white noise. Formally they do treat white noise as
a set member of BS and assume white noise with unity spectral density Sy,., = [ as the
worst-case disturbance for wyg.

Let us at this point assume that a certain controller is in place so that the closed-loop
system can be written as

i = :llt + Bod)o + B1 Wy

s = Cr+Dyww (84)
where # contains = and .. To illustrate the schematics, we make the assumption D1 =0
(Note that the proper case is treated in [L5] and involves a more complicated set of Riccati

equations). Then the closed-loop transfer function from w; to = is simply given by Gi(s) =
C(sI — A)~!'B,. Under this additional assumption, the following theorem can be verified.

Theorem 4.1 ([14], Theorem 1 and Theorem 2) Suppose ¥ > |G|, then

sup [J<[}p = llwallp] = Tracel X, Ba] = fus =27 BIX- 2 (59)
sup 37
sup (=I5 = 72lhen|B] = Trace[B X, Bd] (86)

w1 €BP,wo€BS
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with wy worst = 7'233_\'.,.1" and X, is the real symmetric positive definite solution of
ATX, + XA+ BBTX, + CTC =0 (37)

such that (A —y~2BT X.)) is asymptotically stable and the parameter y has to be chosen large
enough so that |Jw|[b = ]|‘/‘231_X'7i'|?3 <1.

Note that the last assumption assures w; € BP. Furthermore the factorization w; = 'z
can be motivated again. The actual cost J as defined in (83) can be computed using the ob-
servability grammian or the controllability grammian of the closed-loop system with wyerst
in place.

Synthesis in a System with Two Disturbance Inputs
With these considerations the actual problem statement - the synthesis problem - as ap-
proached by Doyle, Zhou and Bodenheimer can be stated as

Given a plant ZIZD/%CB and a prespecified 4, find an internally stabilizing controller A'(s) that
solves the mixed H,/H ..-control problem:

min  sup [zl = v ler i3 (58)
K{s) urlE'P,wOEBS

It is obvious that if we restrict [liey]| = 1. then this cost function actually solves the problem

Jpze = inf  sup _|zllp (89)
N(s} woe BSw €BP
Note that the supremum in the above problem statement is defined over w; € P and not
over w, € BP as this would involve an *~-iteration’ to force w; into BP. As long as the
closed-loop system is stable, wy will always be in P. The optimal mixed H,/H-controller 1s
defined for a ~ that yields w; € BP. It has to be kept in mind that the truly optimal mixed
H,/ H . -synthesis problem is defined for ”wlﬂ?; = 1. It is clear from the cost function Jpzn
that, for arbitrary v, Jpzp reduces to the pure H,-norm minimization problem if w;, = 0,
and it reduces to the standard H.-norm bound problem if wo = 0.
The actual synthesis of the controller is performed by separating the problem into a so-
called Mixed Full Control problem and a Mixed Output Estimation problem, corresponding
respectively to the computation of an optimal feedback gain matrix and the design of an
optimal estimator. This procedure will not be covered here as the resulting equations are
dual to the equations derived by Bernstein and Haddad.

In the paper [56] by Yeh, Banda and Chang, it is proved that the two approaches of
Bernstein/Haddad and Doyle, Zhou and Bodenheimer yield identical necessary and suffi-
cient conditions if the Bernstein-Haddad approach is applied to the dual system of EBEQB«.
That is, petform the following change of notation in the above Bernstein-Haddad approach:

A= AT, E, - Bl C - B}

D, - Cf: Dy — Dy



B—Cf; Ei— Dy Ene = Di

4. - AL, C— LT;- B. — —FT;

R, — Ry: Raxe — Ry Vo = I (pure scaling)
and

Q—-Xa Q@-Y; Q-X,

Then the equations derived from this new dual system by applying Bernstein and Haddad’s
approach yield exactly the same necessary and sufficient conditions derived by Doyle, Zhou
and Bodenheimer in [14] so that the actual controller computation is reduced to the same
coupled equations as derived in [4]. This is a very interesting result. The importance of the
work of Doyle, Zhou and Bodenheimer in this field is in the interpretation and analysis of
the type of disturbance signals in mixed H,/H-analysis.

Finally an observation made by Doyle, Zhou and Bodenheimer is that the mixed Hy/ H -
control problem is solvable only if the pure Hu.-control with the chosen v is solvable (see
[15], Lemma 1). This is an important and intuitive result. If there is no controller that
solves the suboptimal H.-bound problem for the chosen 7 then there will be no mixed
H,/H . -controller achieving the mixed H,/H . -strategy.

4.3 The Rotea and Khargonekar Results

4.3.1 A Bernstein-Haddad Equivalent Setup with State and Static Output
Feedback '

Researchers Rotea and Khargonekar ([18], [25], [26], [27]) addressed two subproblems of the
above general mixed H,/H -problem. The first problem is similar to that of Bernstein and
Haddad, namely

r = Ar+ Biw + Byu
RK1.) 2 = Cox+ Dou
Yzjx 2w = o+ Dyu 0
y = Cur+ Dyw

Their results are important because they provided a controller factorization that results in
‘a convex optimization problem for the cases of state feedback or static output feedback.
The general problem statement that Rotea and Khargonekar addressed can be described as

follows,

“For a plant ER/{S find an output feedback controller u(s) = K'(s)y(s) such that ||T,,,|. < a
subject to internal stability and ||T._ .|l < 7.”

Al

Note that this problem has a slightly different design goal since it tries to satisfy a 2-norm
bound instead of a minimization of ||Ts,,||;. However, the mathematics involved are almost

(RO R
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identical to Bernstein and Haddad's approach except for the parametrization of the controller
K. Note that here the case of 7 = | is considered which obviously can always be achieved
by appropriate scaling.

Before we examine the more general case of output feedback, let us look at the simpler
problem of state feedback. That is C; = I, D; = 0 and a state-feedback controller u(s) =
K (s)y(s). Then the closed-loop system is defined by

r = (A+ B;K)z + Bw ' (91)
7 = (Co+ Do)z (92)
2w = (C1+ D1R)x (93)

Now. following Bernstein and Haddad, the condition ||T%, || < 1 is ensured if a real
symmetric positive definite solution Y exists for the following Riccati equation

[A+ B,K]Y + Y[+ BR)T 4+ Y[C, + DyR)T[Cy + DyR)Y + BiBT <0 (99)

and (A 4+ B;') asymptotically stable. Define an upper bound for the 2-norm from w to =,
with the cost function

J(K) = Trace[(Co+ DyR)Y (Co + Do)} 2 || Toyull2 = Trace({Co+ Dol)L(Co + Dol)T)

(95)

So far the results are similar to those of Bernstein and Haddad for the given system. The
significant difference is in the controller parametrization. Let

K =Wy (96)

where W is a set of matrices of appropriate dimensions. Note that the matrix Y is symmetric
and of dimension n x n. Let &+ € R", and u € R? and define the following set

Q= {(N,Y) e R*"xO : Y >0}
where O is the set of nxn symmetric matrices. If we put this controller into the cost function
(95) and the corresponding Riccati equation (94), then the following functions can he defined

(WYY = Trace[(Co+ DWY Y (Co + DoW Y H) (97)
QW Y) = AY + VAT 4+ BW + WTBT + BBl +(CY + DyW)T(C,Y + D WY98)
We can now define the new optimization problem as

“Find K such that inf f{(W,}") < a subject to Q(W,Y) < 0 with (W, 1Y) e Q.7 7

Next we cite some properties of this optimization problem which have been proven in [27}:

—_

. f(W,Y) is a real analytic convex function on €, this is the major contribution of this
factorization. '

o

Q(W,Y) is a convex matrix valued mapping from  — @ if Y is positive definite.
3. The set {(WY) € @ : QIW,Y) < 0} is bounded if D; has full column rank

and (@l,—.4) is detectable, where ¢y = (I — DI(D?Dl)_lD;T)C'l. and 4 = A -
By(DID)"'DIC.
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1 Under these additional conditions the new optimization problem is a finite dimensional
convex optimization problem on a bounded domain, a very nice property.

The problem of a static output feedback design in the general system as posed in E%Ifol

can be solved by defining an auxiliary system that has a ‘state feedback form’ as a function
of a Riccati equation which in turn depends on the chosen y. In this manner, the static
output feedback case is reduced to the state feedback case.

4.3.2 A System with Two Inputs and Two Outputs

The more general problem of ‘simultaneous’ i,/ H .-control ([26]) involving a system with
two disturbance inputs and two criterion outputs has been considered. It is given as follows

T = Az + BI‘UJQ + Bzw,x, + B3u
RK2z } 22 = Ciz+ D _
SERE S T A D (99)
y =

It can be seen that this approach is also restricted to the state feedback case. Let n denote
the dimension of the above syvstem. Let T, denote the transfer function between 1w, and
5. and T the transfer function between wyand zo. At this point it should be mentioned
that all the previous attempts to solve the mixed H,/H . -problem are set up as constrained
optimization problems. That is: "Find a controller that minimizes [|T3]|2 and [|[Tx||x <7
The approach taken in this work is of a different nature.

“The controller to be found is admissible if it minimizes ||T;||; such that the ||[T ]|~ < 17.
The latter formulation represents an unconstrained optimization problem. The approach uti-
lizes a characterization of all dynamic state feedback controllers that minimize ||T3[|2. Among
these controllers then the ones that satisfy the additional H,-constraint are selected. The
basis for their analysis is the fact that the controller that minimizes ||T%||, is not necessarily

unique. Let us look at the assumptions in their approach first.
Al: (4, B;) is stabilizable,
A2: D, and D, have full column rank,

A3: The transfer functions from u to z; and from u to zx have no invariant zeros on the

imaginary axis,
A4 D;[C"z Dz] = [0 []

These are standard assumptions to ensure that an optimal LQ-state feedback controller
exists. Let's (.)* denote the Moore Penrose inverse, i.e. X X*X = X and XTXXT = X1
and define the following matrices and Riccati equation

<D

ATXp + XpA — (DTCy + BIXp) (DT D) (DICy + B Xrp) + €7 € (100)
= (D D) UDCy + B; XF) (101)



I, = I-5B5f (102)
Ap = A+ ByF (103)
Cir = Ci+DF (104)
Cop = Cy+ DyF (105)

where X is the unique solution of ARE (100) and F is the state feedback matrix that
minimizes ||T;||;. However, this is only one possible solution if By is not of full row rank.
The class of all minimizing controllers KA'(s) can be characterized in terms of 2 transfer
function matrices. For that purpose we define the set S of transfer functions as

S={Q e RH.:Q=WIL(sI - Af). W € RHy}. (106)

Then Rotea and Khargonekar have shown in Theorem 1 of [25] that the class of all
dynamic state feedback controllers that minimize |7z}, is given by

Iy = Aprpg + Bar
v = Fy+1Ir
K3(s):{ v = —lex+1y (107)
r = Qu
Q € 5

The proof for this theorem consists of first using the Youla parametrization to show that
the defined class of controllers is actually stabilizing the plant and then this parametrization
is used to show that Q € S is the class of controllers that minimizes ||Th[[z. It is easily
verified now that if im(B;) = R" then II; = 0 and the above class of minimizing controllers
reduces to the minimizing static feedback ‘controller’ F (im(.) denotes the image space of
the argument). In this case, this design method will result in F as the optimal state feedback
matrix. The condition of whether or not |7l < 7 is satisfied, has to be checked via the
according Riccati equation or the respective hamiltonian. On the other hand, If im(B,) is
a proper subspace of R" then the {reedom given by the family of controllers in (107) can
be used to satisfy the additional H.. -requirement. The following theorem characterizes the
class of all dynamic state feedback controllers that satisfy the H.-requirement in addition.

Theorem 4.2 (Theorem 2 in [25]) Given a system EZR/IfOz as defined above, the problem
of minimizing || T3z such that ||Tx||x < | is solvable if and only if the following conditions
are satisfied: o

{. The ARE
ATX o + Xow A+ Xoua( B2 B] = B3BJ ) X0 + €5 (2 = 0 (108)

has a stabidizing positive semi-definite solution Xy,
2. The ARE
3"29;.-4{* + AF)Z); + SVI)QC;TFCVZFY'ZJQ + B?([ - L2+ ‘/'2)827‘ =0 (109)

has a stabilizing solution Y.



p(Y2r Xo) < 1. (110)

‘whel‘e "2 = HIB2.

If these conditions are satisfied then the class of all optimal Hy/H-optimal dynamic state

feed

back controllers - optimal in the sense as defined above - is given by

KZOG(S) ::(A'Zx“ B'va.’(“*‘lx:‘ D'va)‘

where
AP = A+ (I - O)BsH + OBsF + (I — 0)B:B; X
B*™ = A0 - 0:Af
™ = H-F
O = 7, B‘ZL';’HI
H = —'B'}r-\vz -
22 = ([ — )'-jgvx,-YZOO)-l
Remarks:

po—

I~

4.4
4.4.

. The setup considers the 'nonsingular’ case, that is DD, #0.
Solvability of ARE (108) ensures that ||[Ts|ls < 1 (see [13], Theorem 2).

ARE (109) and equation (110) represent conditions that ensure the existénce of a
controller that solves the problem of minimizing |72}z

Note that 1, = [1;B; = (I — BB} )B;. Thus 1, =0 and V;7 = 0 if either im(B,) € R"

or im(B;) C im(B,). In both cases, the optimal controller K#*(s) reduces to the static

state feedback controller K#*(s) = F.

A design algorithm has to solve ARE (100) to find F, then Theorem 4.2 can be applied
to find the optimal mixed H,/H.-controller.

This approach only considers the case of static or dynamic state feedback.

"Other Approaches in Mixed H,/H-Control

1 Mustafa’s Entropy Function

Before we present our design approach to the mixed H,/H,.-control problem, the so-called

entr

opy (at infinity, see [64]) of a system needs to be defined.
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Definition 4.1 (Definition 2.2.1 in [64], see also [57]) Consider
a system H:=(A,B,C,D) with H € RL. if ||H||« < v then the y-entropy of this system
(at infinity) I(H,v) is defined as

2 e .
I(H,4) = —;—/ In | det{I - 2 H"(ju)H(jw)} | dw (111)
TJ-x
If |H|l~ > v then I(H,%) is unbounded (infinite). Thus, the entropy of the considered
system is finite if and only if the chosen 7 is larger then ||H|ls. This fact establishes the
connection of entropy to the H.-framework. Connection to H, can be established using
Lemma A.2.1 in [64] which states that

—In I (] - ,.2[,\7—.\') IZ SQTTCLCG{;\’HJ\“’}

With the above lemma it can be verified that the entropy of a strictly proper system is an
upper bound for its 2-norm. That is, (see Theorem 2.4.4 in [64]) let H be strictly proper
and ||H||s < ~, then I[(H,~) > ||H|?. It can further be shown that lim,_., I(H,v) = || H||3.
From now on, entropy will denote the entropy at infinity as defined by Mustafa and Glover
in [64]. It is obvious that the entropy as defined represents yet another characterization of an
H..-norm bound. The cost function used for mixed Hy/ H,.-control finally is (see Definition
1 in [31]) as follows.

Definition 4.2 ([31]) Consider a system H(s) = [Ho(s) H(s)] with Hy(s) € RH,,
Hy(s) € RHy, and ||H ||~ < 7. then we define

1 R
L(H.5) = o /.,t Trace {(I — v H H;)™ HoH}}dw (112)

In their paper [31], MacMartin, Hall and Mustafa have shown that L(H,~) also represents an
* upper bound for the 2-norm of Hy; namely, L(H,v) > ||[Hol|3 and lim,_. L(H,7) = || Ho|3-
Thus, for v — oc the defined cost function represents a pure H, cost function. For a finite
~, L(H,~) represents a compromise between an H,-strategy on Hy and and an H . -strategy
on H,. The best H -strategy for |H,||» < 7 is obviously achieved if all the singular values
of H, are as small as possible, and thus ||Hy||~ is as small as possible. The H;-strategy is
pursued by the fact that L(H,v) overbounds ||Ho|f3. '

The objective is to minimize this cost function for a certain ¥ assuming that ||Hi|l. < 7.
The actual minimization of L(H,v) is performed using a state-space approach where the
cost is evaluated in terms of these state-space matrices. The system under consideration is
identical to E?/%QB defined above. Hy and H; represent the transfer functions from wg and w,
to » respectively. The mathematical optimization is performed similar to the approach taken
by Bernstein and Haddad by appending the H..-ARE to the cost function via a Lagrange
multiplier matrix. Derivatives of the resulting Lagrangian with respect to all the respective
matrices vield the required necessary conditions consisting of two ARE’s and two Lyapunov
equations that are coupled. Solutions for these coupled equations are also based on numerical

methods.
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4.4.2 Steinbuch and Bosgra

Steinbuch and Bosgra addressed both setups (i.e. two disturbance inputs/ one criterion out-
put as well as one disturbance input/two criterion outputs) as defined by Bernstein/Haddad
and Doyle/Zhou/Bodenheimer. For both systems they consider the static output feedback
case. The first considered system is of the form (81) with a cost function similar to that
defined in Theorem 4.1. The difference to the Doyle/Zhou/Bodenheimer approach is the
explicit assumption that w; = Nz where z is the system state. This assumption is justified
by the form of wors as established in Theorem 4.1. The procedure involves once again
the forming of a Lagrangian and the subsequent derivation of necessary conditions. These
necessary conditions involve coupled quadratic matrix equations that have to be solved nu-
merically. A solution for the setup of Bernstein and Haddad follows by duality. The extension
to fixed order dynamic feedback has also been pointed out.

An interesting comment was made at the end of this paper, namely the authors suggested
that the worst case H..-disturbance can be defined using an observer-based ‘disturbance

generator’.

4.5 Summary

From the above presentation one can see that all analytical methods currently available are
based in one way or another on a set of Riccati (and Lyapunov) equations. Except for the
work of Rotea and Khargonekar (the two input/two disturbance case with dynamic state
feedback compensators), these resulting equations are highly coupled and can be solved only
using numerical methods. Also, all the approaches assume white noise as the worst-case
disturbance for the H,-optimal strategy. In many cases, it is desirable to find a controller
that optimizes the system with respect to different disturbance distributions. This design
objective has not yet been incorporated into these approaches.

An important fact can be deduced {rom these approaches. In the “two disturbance in-
puts/one criterion output® case as well as in the ‘one disturbance input/two criterion outputs’
case, the worst-case disturbance for the H . -strategy can be expressed as a linear combination
of the system state z. In the more general case of the ‘two disturbance inputs/two criterion
outputs’ Steinbuch and Bosgra suggested the use of a dynamical system to generate the
worst-case disturbance.

5 On the Cost Functional féf{zT(t)z(t) — 2wl (t)w(t)}dt

The above cost functional is closely related to equation (20). The relation has been estab-
lished by Craven (see [60] on pages 108-109). A time-domain definition of the H, -norm (in
equation (20) in terms of a LQ-type function can be done using a Lagrange multiplier v to
include the constraint ||wl|]z = 1 into the cost ||z][2. We have

IH 2% = Supjpup=1 My —x Lo 2T =) + vwT (Dw(t) — 1] }dt

The constraint [Jw(t)|]. = | is achieved in an iterative manner. If the problem is to determine
whether ||H|l« < 7. the function defined in the title of this section is very valuable. Let
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w(t) denote the input and z(¢) the output of a linear time invariant system. A more recent
analysis of this cost function has been performed by G. Tadmor ([48], [49] and [30]) and a
clear connection between inequality (21) and the above cost function has been established.

Let in this section |[o]2 = fo/ vT(¢)v(t)dt.

Observation 5.1 Consider a system G:=(4,B,C,D) where A is asymptotically stable,
r(0) = xo, ty > 0 and w(t) € L, Define Topy = 2o — (1) and T., : w(t) — =z(i).
Then

1213 = P llelli = [ Tezoto + Towtwllz = ¥* (el (113)
< | Teroollz + I Tewwllz = 7l (114)
< Tewo ol + G = vl (115)

The chain of inequalities can be verified using the norm-triangular inequality and inequality
(21). Now it is important to differ between the cases +(0) = vo # 0 and 2(0) = 0. For
2(0) = 0 we recover the inequality (21.) When 2(0) = 2o # 0 additional terms based on the
system response to these initial conditions have to be considered. In general the following
can be stated. '

Observation 5.2 ([49]) Consider a system G:=(4,B,C,D) where A is asymptotically
stable, ¥(0) = xg, t; — 20 and w(t) € Ly, then [|G]lc <3 iff there is a §(vp.w) > 0 such
that B

1115 = 52wl < =6(xo, w)elly (116)

Note that the above inequalities are valid for any xo and any w(t) including the worst-case
disturbance w, .5 (t) in Ly. To append one of these inequalities with w(t) = wyerse(t) (by
taking max of both sides) as a side constraint to an H;-optimization problem the parameter
8(xp,w) has to he known beforehand. é(xg.w) is not known apriori as it is a function of
the disturbance w(t) and ry. The defined function is still valuable in the H,-sense due to
properties discussed in the remaining section. To see this let us consider a maximization
problem for finite time as follows.

Definition 5.1 Consider the following optimization problem with G:=(A.B,C,D), A asymp-
totically stable, (A,B) controllable, (C,A) observable, r(0) = zo, t; >0 and vy > (D)

Ji(w) = max l!{:T(t):(t) — 721L»T(t)'11.>(t)}dt ©(117)
wely Jg

Note that the condition 5 > &(D) is a necessary condition for the existence of a maximum.
Applying standard Lagrange multiplier techniques, the above optimization problem results
“in a Two Point Boundary Problem (TPBVP):

Theorem 5.1 Consider the problem defined in Definition 5.1 and for a finite t;. Then the
worst-case disturbance wo(t) s given by

wolt) = (421 — DTDY YDTCx(t) + BTA(1)] (113)



subject to

with boundary conditions

#(0) = o 120
\t;) = 0 (121)

where
= A+ BR'DTC BR™'BT (122)
M = —’)ZCTS'XC —[A-}-BR"DTC]T ’ ==

R= (321 = DTD), S = (1% — DD7) and A1) being the Lagrange multiplier vector.

Note that this is an 'open-loop’ characterization of w(t), a closed-loop description of wo(t)
can be found in terms of the solution of a differential Riccati equation as follows.

Theorem 5.2 If a solution for the differential Riccati equation

Z\(8) + Z(1)[A + BRTDTC) + [A+ BRDTCI Zy(1) (123)
+Z(t)yBR™'BTZ,(t) + 42CTS-'C =0 2

with the boundary condition

Zi(ty) =0 (124)
erists. then
Iy = 23 Z,(0)x0 (125)
and i
wolt) = (121 — DTD)'[DTC + BT Zi ()] (1) (126)

Equivalent results can be derived for the infinite-time case. We have

Definition 5.2

Ja(w) = max lim v {:T(t):(t) — 2T (t)w(t)}dt (127)
0

wel, ty—nc
with the same assumptions as in definttion 5.1.

For the infinite time problem as {; — oo, the differential Riccati equation will reduce to an
algebraic Riccati equation.

Theorem 5.3 If a solution for the algebraic Riccati equation
(AT + CTDR™'BT)Z, + Z\[A+ BRT'DTC| + Z\BR'BTZ, + 4*C'S7'C =0 (128)

exists and :
A+ B(+*I -DTD)'DTC + B'Z)] ' (129)
is asymptotically stable, then

Jy = 2l Z1xg o (130)

and
wo(t) = (v21 — DTDY'[DTC + BT Z,]a(2) (131)



33

~If a solution of this type exists then the associated TPBVP is also solvable. An important
observation from this theorem is that the worst-case disturbance for #; — 20 is of a "full
state feedback type’. That is, we(t) = Nx(t) can be motivated.

Some very interesting connections between the H_-norm and the optimization problem
Jy are given by the Hamiltonian matrices M, (see equation (10)) and M, and the associated
Riccati equations. It is easy to verify that the following is true,

M, =T 'NM,T (132)
where 1
-7 0
Tz( v > (133)
0 -l

Note that T is nonsingular and has no eigenvalue A; with Re(A;) = 0 for any 4 > 0. Thus
we have the following lemma.

Lemma 5.1 Consider a system G:=(A.B,C,D) with 4 asymptotically stable, (A.B) control-
lable, (C',A) observable and v > 5(D). then the following statements are equivalent:

1G] < 7.

w

(M, — jeI] nonsingular Y € R,

3. M, — jwl] nonsingular Y € R.

4. The ARE (13) has a unique real positive definite stabilizing solution X; = X1,

5. The ARE (128) has a unique real positive definite stabilizing solution Zy = ZF = ~4X7,

6. J,>0.

The equivalence of these conditions is easily verified using previous lemmas and theorems.
Note also that M, has the same eigenvalues as M,. Furthermore, if the ARE (128) has a
solution Z; as characterized in Lemma 5.1, then this solution is unique and is the only solution
that results in an asymptotically stable 4 + B(v*] — DTD)"Y[DTC + BTZ;]. Furthermore,
the matrix Z, is the maximal solution of the ARFE (128). That is, every other solution Zy of
(128) satisfies Z; — Z; > 0. _

Assume that there exist solutions Z, for the ARE (128) and Z,(t) for the differential
Riccati equation (123), then the value of the cost function J,(w) satisfies

Ji =2l Z(0)xo = 2} Zy00 - xT(t,)zl.r(t;) (134)
Thus, it can be verified that the optimal value of J; is monotonically increasing and Z; >

Z,(0). Hence Z, represents an upper bound for Ji(w) in the limit as t; — >c. With these
preliminaries the following theorem can be stated: )

Theorem 5.4 ([53], [29]) Consider a system G:=(A.B,C,D) where A is asymptotically

stable, (A,B) controllable, (C,A) observable, CTD =0, BDT =0 and v > &(D), then, for

SOme Ty

. t
IGlle <5 <= 0<max lim /’{;T(z)z(t) — 2wl (w(t)}dt < o (135)
ur . 0

lf——v'XI
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The “if and ony if " relationship between ||G']|s < v and the nonnegativity of J; has already
been established in lemma (5.1), thus the only remaining part to be proven is the boundedness
of J,.

Willems in {53] stated a proof that connects |G|l < v and the finiteness of the above cost
functional directly via the frequency inequality while Magierou [29] showed that the solution
Z,(t) of the differential Riccati equation (123) is monotonically increasing. An alternative
proof based on the associated Hamiltonian is possible also. Thus, if there is no symmetric
positive definite solution to the Riccati equation (128), then the solution Z,(¢) of (123) and
thus the value of the cost functional J; will grow unbounded for some xzg. Let us now
define an alternative form of the above cost function, namely the cost function J; with the
worst-case disturbance wy(t) = (y*1 — DTDY-'[DTC + BT K]z(t) in place where the matrix
I is used as a design parameter in the determination of the worst-case disturbance. The
orthogonality condition finally guarantees, that the worst-case disturbance can be generated
by K. '

Definition 5.3 Consider a system G:=(A,B.C,D) where A is asymptotically stable, (A,B)
controllable, (C.A) observable and v > o(D). We define

— t — —
J3(K) = mlgxtlim Trace{/ ! eFTA2CTS™'C = KBR™'BTR]e™dt} (136)
[T Attt 40
where R and S are defined in equation (122) and
F=4A+BRYDTC + BTR] (137)

Note that J3(R) is just Jo{w) with the parametrization of w(t) = (721 — DTD)- Y DTC +
BTR)e(t). With the assumption y > (D) we assure that R and S are positive definite
matrices. We now know that. if |G|l < 7. the unique maximizing K = Z, is positive
definite, svmmetric and the closed loop system is asymptotically stable, in this case 0 <
Jo(Zy) = J3(K) < > . [f we consider the case (D) < 7 < ||G|l~ then the ARE (128)
indicates that there is no positive definite Z, that ‘stabilizes’ the system (there is no solution
of ARE (128) at all that results in a stable closed-loop system at all). That is, there is
no symmetric positive definite R that solves the associated Riccati equation such that Fis
asymptotically stable. If we look at the maximization problem for J5(A') it can be verified
that for K = I (for some £ > 0) J3(K) > 0 can be achieved. Thus we can conclude
that J3(K) > 0 for any maximizing K as long as we assume 7 > &(D). Furthermore,
for 5(D) < 7 < ||G]|~. we know that the maximizing K will result in an unbounded cost
function value J3(R') for #; — oc. Note, that the cost function J3(K) corresponds to an
initial condition z¢ with zyel = 7. Such an initial condition does not exist, this assumption
‘has its justification from stochastic interpretation in terms of covariance matrices. It can
be seen that I will attempt to destabilize F' by being ‘large’, at the same time K must
be *small’ enough to not excite this “destabilized’ mode of F with a negative eigenvalue of
[v2CTS-IC - K BR-'BTR]. This would lead to a negative unbounded cost function value
which is not in the interest of a maximizing strategy. We also could use a parametrization
wo(t) = K(t). With this parametrization of the worst-case disturbance for the H,.-bound
problem we arrive at a cost function J3( ) similar to J3(K). Namely

- t , )
J3(K) = max lim Trace{/ ! 6GT![(C' + DK)YT(C + DR) - vIRT K)e“tdt) (138)
0

I Cj-—'.\:'
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where G = 4 + BR.

Similar observations can be made about this cost function. For A" =0, J5(K) > 0. Thus
every maximizing K once more will yield a non-negative cost. However, it will be more
convenient to adopt a parametrization as in (131), as this parametrization will allow us a
better comparison with Riccati-based approaches.

The additional term futf[—*,'ZwT(_t)u'(t)]df in the cost function Jy(w) plays a similar role as
the term fé’[iuT(I)u(t)]df in the LQ-design. As ¢ — 0, the "cheap’ control case is ap-
proached in LQ-design while v < ||G.u]lx is equivalent to ‘cheap disturbances’, meaning
that the disturbances w can have unbounded power. The worst-case H., disturbance w is
necessarily of bounded power if ||(7.,[l~ < 7 so that this cost function actually represents

max,, lim;, fotf T(t)z(t)dt for ||G -l < 7 if we iterate on 7 to achieve ||woll2 = 1. If the

1

solution exists, then furthermore wy € Lo.

Example:
Consider the following system G := (A, B,(". D) with

_0.0168 0.1121  0.0003 —0.5608 —0.0243
L | 00164 0TI 0.9915 0.0015 g _ | —0.0634
A= 00417 —=3.6595 —0.9541 0 ‘ T —3.6942

0 0 1.0000 0 0
(f':(o 0 1 0). D =0,

then it is easy to verify that the conditions in theorem 5.4 are satisfied. The oc-norm of &
can he computed to be ||G]|%. = 2.9903. The following plot then shows the value of the cost
function {136) in Definition 5.3 over the finite time ¢y for three different values of +. It is
casily seen that, for 7 < ||G']|. the plot diverges to large values for large {; and to infinite
values as t; — oc, while the cost remains bounded and converges to a steady-state value for
large ¢; if 4 is chosen such that y > NG -

The H.. -control problem is in general a min-max problem. We minimize a cost function
with respect to the controller parameters while maximizing the cost function with respect
to the disturbances. To see the connection between this min-max H-control problem and
the cost function in this section let us look to a game theoretical problem associated with
the cost function. To shorten this presentation only the case for infinite ¢ is considered. For
finite ¢, similar results can be developed. For this purpose define a system as follows.

{ # o= Av+ Buw+Tu, x{0)=u1xp (139)

= = (r+ Dw+ Qu

where z(t) represents the state of the system, u(t) the control input and w(t) the disturbance.
Now a game problem can be formulated as follows.

Definition 5.4 Consider a system described in (139) with (A,B) controllable, (A,T') con-
trollable, (C,A) observable, D =0, QTC =0, QTQ > 0 and define

t
Jy(u.w) = min max lim ! {:T(t):(t) — e (Hw(t)}dt (140)
w€Ly wely ty—x Jy ) J
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J vs Tf for Different Values of y

1.4

J(TE)

102 103 104 | 108
; Tf
Figure 1: Worst-Case Design

Note that the assumption D = 0 is not restrictive, it can be easily removed. This assumption
is only made to facilitate our presentation (for a complete treatment see [24]). Without the
assumption Q7Q > 0 the problem is a singular game problem. Let us skip here the associated
Two Point Boundary Problem and examine directly the associated Riccati equation for

tf—%:)o.

Theorem 5.5 ([35] [29] [53]) In the limit as t; — oo the min-maz problem stated in Def-
inition 5.4 with a plant (139) has a finite solution for some xq if and only if the ARE

Zo[A=T(OTQ)'QTCI+ [A-T(QTQ) QT Z, - Z,[D(QT Q)" 'TT - —%BBT} Z,+CTC =0
;

has a positive semi-definite solution Zy such that .
A-T(QTQ)QTC +T72,) + 5BBTZ,
is asymptotically stable, then the optimal strategies are given as
w(t) = Kux(t) = —(Q7Q)QTC + 7 Z3)x(t) (142)
wo(t) = Kya(t)= %BTZgar(t) (143)
and the value of the game is given by
| Ji(topt, Wept) = .r{Z-ﬂo >0 (144)

Furthermore, in this case wyp(t) € Lo.
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The resulting ARE is a so-called game-theoretical ARE, characterized by the sign-indefinite
term [[(Q7Q)~'TT — 5BBT]. The proof is based on the same references as in Theorem
5.4. Connection between this game theoretical problem and the H.-control problem has
been pointed out by - among others - Tadmor in [49]. It can be verified by comparing ARE
(L41) with the ARE in Theorem 2 of [13]. Let 7o denote the smallest H.-norm from w to
= in (139) achievable with pure state feedback, that is u(f) = N,x(t). Let T., denote the
closed-loop transfer function between w and z in (139) with « = A',x in place, then

Theorem 5.6 ([49], [13]) Under the assumptions made in [13] and QTQ > 0, there exists
a state feedback control u(t) = KN, x(t) such that v > 7o (that is ming, [|[Tzwllx = 70 <
v ) if and only if the ARE (141) has a symmetric positive definite solution Zy such that
A=TOQT)TC +ITZ,) + ;};BBTZQ is asymplotically stable.

Thus, a finite value of the above game, and hence with .J;(u,w) being bounded implies
that there is a state feedback matrix that stabilizes the system and achieves ||T%.,. ||« < 5.
Furthermore, the worst-case disturbance can be of the form w,,(t) = KNx(?). If we consider
static state feedback controllers, then Jy(u,w) being unbounded for a chosen 5 implies that
there is no state feedback matrix that achieves the bound ||T..||~ < ~. This, in turn,
implies ¥ < 4. If a general compensator structure is used, then unboundedness of Jy(u. w)
implies that the given controller cannot satisfy the bound ||T.,]l < 7. It 15 obvious now
that the cost functional considered in this section represents a useful tool to incorporate an
H . -constraint into a f;-cost function.

6 A LQ-Type Cost Function for Mixed H,/H.-
Control Design

The previous section motivates a parametrization of the worst-case H.-disturbance in the
form of a state feedback w(t) = Na(t). It should be noted, that other parametrizations are
also possible. We could, for example, assume that w is generated by an independent linear
system {an open-loop parametrization) or a factorization w(t) = wee?*! in the definition of
a frequency-domain cost function. The state-feedback characterization, however, has proven
to provide many desirable connections to the H. -bound problem.

In this section we propose a LQ-cost function that represents the mixed H,/H.-bound

control problem.

6.1 The One Disturbance/Two Criterion Case

The system under consideration represents the most general case of the one disturbance
input/two criterion output case. Let

o= dr+ Biw+ Bau, x(0) =2

Cva 4+ Dyw + Disu |
Cv-g.l‘ + me + D23ll (145)
Y = C;}J' + D311L’ + D33u

It

/2 _
$i/? =

O
b
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where it is assumed that the system uncertainties are all lumped into one A-block already,
namely w = Az, with [|[Afx < o= where o is some positive constant. Note that the small
gain theorem then provides robust stability as long as the H,,-norm of the transfer function
from w and = is smaller then 7. Furthermore the following assumptions are made:

A1l: (A, By) and (- By) are controllable pairs,

A2: (C1, A), (C.A) and (C3, A) are observable pairs.

The compensator is assumed to be proper with the general structure,

i . = Agrc+ cha TC(O) = Ts0
EC ~—{ y — C'CIC + Dcy (146)
For the H..-part of our cost function the disturbance w is parametrized in the form
w= Ko+ Kpe, =K ( ;' ) (147)

Define furthermore the two subsystems.

= Ar+ Biw+ Bau, x(0) =z
Yo:=2 2z = i+ Dyw+ Disu (148)
y = s+ Dyw+ Dazu
r = Ar+ Biw+ Bsu, z(0) =20
.:=¢ 2 = x4 Dyw+ Dyu (149)
y = Csr+ Dyyw+ Dyu

Then the closed-loop system with the compensator in place has the following form

1/2 Ty = Aata+ Baw, rc[(O) = Tq0
2:Sél =< 25 = Ciurg+ Dnaw (150)
2w = Couta+ Daaw
where '
T

T = ( T )

4, = A+ Bs(I — D:D33)™' D:Cs Bi(I — D, D33)"'C:

et =\ B.Cs+ B.Ds3(I = DcD33) ' D.Cs A + B.Ds3(I — D .D33)~'C,

B, = By + Bs(I — D.D33)"' D.D3
=\ Dy + Das(I — D:Ds3)"' D. D3

Cra = ( Cy+ Dis(I - D.D33)"'D.C3 Dya(l - D.D33)7'C. )

Dya = ( Dy + Dys(I — D.D33) ' D.Day )
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Caa = ( Cot Dis(I = DDss) 7 D.Cs DoslI = D. D)™ C: )
Dara = ( Dy + Dys(I — D.D33)™' DDy )

Let 'y denote a matrix

v Dc C'c
Co= ( B. A )

that contains all the compensator matrices. Now the cost function can be defined to represent
the mixed H,/H.-criterion. To do that, we define the two separate cost functions J*HCo,ty),

J>(Co, K, ty) as follows.
Definition 6.1 Dt fine
JHCoid ) = ELTU Q) + ul (1) Ryu(iy)] (131)

subject to the system g, the compensator Te. w(t) white noise with unit spectral density,
Q=Q" >0, R, = RT > 0 and the constraint |Cy | < M. Vi,j, where M. is an upper
bound for every entry i Cy.

Definition 6.2 Define

lf

J¥(Coow.ty) = J<(Co. N, 1g) = / (2T ()2 (t) — P T (w()]dt (152)

0

subject to the system X and the compensator Xe. If a certain controller Cy is given,
perform the preliminary transformation w(t) = (21 - DlTh,,D“d)_I[Dlle‘lCm.l‘(t) + BLw(t)],
w(t) = Kag(t), K = KT >0 and [K,)] < Mg Vi.j, where My 1s an upper bound on all

entries of K.
With all these preliminaries we now can finally state the cost function:

Definition 6.3 dssume a system Zé/z and a compensator L¢. Then the cost function for

a mived Hyf H -design is defined as follows,

JH=(Co, K) = ng.in { .J’[tlim- JHCotp)] + (1 — ,3)[m[z}.\'l]lim_ J=(Co. K ty)] } (153)
. e oo
subject to Dy = 0 for boundedness of JHCy, o),
5'(D21c{) <7,
(I — D.D33) is nonsingular for well posedness,
([Caet + Da1a KT [Cot + Dna K] - ~IRTR) > 0 VCy for non-negativity of the cost function,
(Au, Ba) is a controllable pair,
(Cha Ay) and (Cay, Ay) are observable 1)(1‘1"7‘3.7('.21:_,D-21C1 =0, BdD.’ZTlcz =0
and 3 € [0, 1}.



6.1.1 Interpretation of the Cost Function and Comments

1. In general the cost function represents the weighted sum of a weighted H;-criterion
J?(Co,ts) and a H-bound criterion J*(Co, K, t;). That is, having chosen a 7, the
design based on this cost function attempts to minimize the Hj-norm from w to z;
while satisfying the H.-norm-bound from w to z, by ‘minimizing’ J*(Cy, K) to a
finite value (in the limit for t; — o). Note, that - in the limit ast; — oo - JH*(Cy, K)
will be unbounded if either the design yields an unstable system or the H-bound is
violated. If J2*(Co. K') is finite. we know that the design achieved a stable closed-
loop system with an H.-norm from w to z, larger then vy, the minimal H. -norm
achievable with state feedback. The algorithm proposed in the next chapter will give
more insights into this problem when general compensator structures are considered.

The set of all feasible compensators can be characterized as follows:

“A compensator X is feasible if the compensator yields a finite value for JH>(Cy, K).”
This characterization can be based on Theorem 5.5 or on the algorithm used for the
actual computation of the compensator, namely a sequence of minimizations and max-
imizations. The set of feasible compensators can then be motivated by Theorem 5.4.

S

3. The cost function as posed represernts a ‘simultaneous mixed Hg/H,x-bOancl-appfoach’.
That means, it represents an unconstrained optimization problem (unconstrained in
the H..-sense). as both objectives are explicitely contained in the cost function. The
design objectives can be summarized in the following form:

“Find a controller that internally stabilizes the system, that furthermore minimizes
the 2-norm from w to 2, and satisfies an H,-norm bound from w to z,.”

It can be verified now that the set of feasible compensators as defined above satisfies
these design objectives.

1. The assumption Dy = 0 is necessary for a finite Hp-norm from w to z,.

5. 7(Dq1a) < 7 guarantees that the cost function maxy limg, — o J>=(Co. K, ty) is positive
for a given (%, it furthermore is a necessary condition for the existence of a maximum
for max,, J*(Cy, w, t;). It is easily seen that in the case of a strictly proper compensator
it is necessary for ||(7._ ||~ < 7 that 6(Dg) < 7.

6. The observability and controllability assumptions A1 and A2 as well as the orthogonal-
ity assumptions in definition 6.3 assure that there is a r.,(0) such that the cost function
J*(Cq, K, t;) will grow unbounded when the H,.-bound is violated (unbounded in the
limit as t; — oo). The controllability assumptions are also necessary for the system
to be stabilizable by u and disturbable by w while the observability condition assures
that there are no unstable hidden modes unaccounted for in the cost function.

7. The assumption ([Cho + Do N)T[Cot + DauK] — VIKTK) > 0 V(o is a suffi-
cient condition for ming, lim;, J>(Co, K,t;) to be non-negative for a given K.
Without this assumption the minimization of J°(Cy, K, t;) might result in a nega-
tive infinite function value. Cases can be constructed, where only a small adjust-
ment of the controller parameters results in a negative infinite cost (without re-

ally changing the dynamics of the compensator during the minimizations). Since
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our approach is gradient based (a sequence of minimizations and maximizations)
the case could arise where the cost function J¥*((y, ') alternates indefinitely be-
tween a large negative cost (when the minimization is performed) and a large positive
cost (when the maximization is performed) without convergence. The assumption
([Caat + Dy K)T[Cra + Do K] — v2ATR) >0 VCp excludes this case.

8. J¥>(Cy. ) is continuous in K as well as in Cy as long as (I — D Ds3) is nonsingular.
If continuity problems arise in the algorithm we can always assume D33 = 0 for the
design and then reincorporate Dy if the final design for the plant with D3z = 0 is well
posed (see [66] section 5.5.2). ;

9. The restriction on the entries of Cy and A guarantees that the domains for (g and K
are closed and bounded. This restriction also avoids the ‘infinite gain case’. That is,
no element of C'y or A" can grow unhounded.

10. 3 is a weighting factor that allows a mixing of the H.-bound- and Hj-criteria. In
the limiting cases (3 = 1 and 3 = 0) the implications for the optimization problem
are obvious, namely the reduction of the cost function to either a pure H,-problem
or a pure H..-bound problem. However, as pointed out in the results due to Doyle,
Zhou and Khargonekar, the mixed H,/H -problem as stated is solvable if and only
if the pure H..-bound problem has a solution. Thus, at this point the implications of

3 € (0,1) are not completely clear. practical designs and their dependence on 3 will
be considered.

11. The cost function allows an optimization of the Hj-criterion over noise distributions
other than white noise by using shaping filters.

12. If an additional 5-iteration is included in the algorithm, the true mixed H,/H..-
problem can also be addressed. Furthermore, if structural knowledge about A is known
the p-synthesis problem can be addressed by introducing appropriate unitary scaling
matrices (see e.g. [12]). '

13. The cost function .J2*((y. ') is not concave in K, nor is it convex in Cy. At least no
proof has been found so far that it is concave in /. This raises the question if there
is a different parametrization of the worst case H..-disturbance that forms a concave
optimization problem.

6.2 The Two Disturbance/One‘ Criterion Case

The above considerations can be applied to the two disturbance input/one criterion output
case. Here we consider the most general system with two disturbance inputs and one criterion

output,

r = Ar+ Biw, + Bywse + Bau, (0) = 29
ziti= Cia + Dyywy + Digws + Disu (154)
y = (‘3.1’ + D31HP-2 -+ Dggluw + D33U '

Lt
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~ with the additional assumptions
A1’ (A, B;) for i=1,2,3 form controllable pairs,
A2 (C). A) and (C3, A) form observable pairs.

The compensator for this case is assumed to be of the same form as in the one distur-
bance/two criterion case. Forming the closed loop system with the compensator in place

vields
2/1 -%cl - ‘{‘cl‘fcl + B_lclw‘l + B'Zgllvooa %cl(o) = T.o e
Fsal = { = CiaZa+ Dnaws + Digaws (155)
where
_ I
Lol = ( T. )
i, = oA+ B3(I — D.D33)"'D.Cs B3(I — D.D33)7'C.
Al =\ B.Cy + ByDss(I — D.D33)™'D.Cy A+ B2 Das(1 — D.Dy3)7'C.

B, = B, + Bs(I — D:D33)"' D. D3,

18 =\ B.Dy + ByDss(I — D.Ds3)™ ' D.Dsy
o By + By(I — D.D33)" ' D.Dsy

4 B.Ds; + ByDs3(I — D.D3s)™' DD

Cra = ( Cy 4 Dis(I = D.D33)™' D.Cs Dia(! — D, D33)7'C, )
Dllcl = ( D+ Dis(f — D.D33)"'D.Dy )
Dy = ( Dy + Dis(T - D.D33)"'D. D3, )

The cost function for mixed H,/H . -control is similar to the one defined above. However,
here = plays the dual role that w played in the one disturbance/two criterion case.

Definition 6.4 Consider the system Sgll and the compensator Xo. Then the cost function
for a mized Hy/ Hy-destgn is defined as follows

_ t
J212(Co, K) = min max lim /O’[:T(t):(t) — 22wl (Hw (1)]dt (156)

Co wa, KN ty—

subject to Dy = 0, (Dyaq) < v. (I — D.D33) is nonsingular and w(t) = KTy(t) and
wo(t) white noise with unit spectral density. '

Note that this definition represents the ‘key cost function’ for our design approach to the
mixed H,/Hs problem. Additional assumptions have to be included in order to avoid
negativity of the cost function or unobservability /uncontrollability. This cost function has
similar interpretations as those given in the one disturbance/two criterion case and are

omitted here.
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7 Algorithm For The Proposed Mixed H,/H, -Control
Design

As mentioned in the introduction, the setting is that of a finite time with an LQ-type cost
function for the mixed H,/H -optimization. This finite time setting has the advantage that
all defined LQ-type cost functions are well defined. In the limit as ¢y — oc, time domain
functions can only be expressed in terms of Lyapunov and Riccati equations. This formu-
lation has the "advantage’ that, in the steady-state form, it recovers the problem associated
with Riccati-based approaches. The approach taken here follows [23] in which a certain pre-
specified compensator structure is chosen (not necessarily of the same order as the plant).
Starting at a small ts, this compensator structure is optimized with respect to the worst-case
disturbances. Once an optimized solution for the compensator has been found, ¢ is increased
and the process repeated. The design procedure eventually settles to a t; representative of
the steady-state condition. Even if the final result of the algorithm does not yield a feasible
compensator, we still can make statements about the resulting closed-loop system based on
the individual values of J>(Co. K, t;) and J*(Co, K, t;) and their ‘time-histories’.

Attention in this section is restricted to the one disturbance/two criterion case, an equiv-
alent algorithm can be defined for the dual case of two disturbances and one criterion output.

Note, that the problem '
min max hm J™(Co, . ty) (157)
Co R tj—=x
as stated in Definition 6.2 is a true min-max problem added to the pure H,-problem. For
the H,-problem we already know that the worst-case disturbance is white noise so that the
H,-part of the problem is actually only a min-problem.

A complete derivation of the pure H. -bound problem in terms of game theory has been
presented recently by Rhee and Speyer in [42]. Solutions are given in terms of two ARE’s
(the same as derived in the DGKF paper). A complete analytical treatment of the mixed
H,/ H..,-bound problem in game theoretical terms, however, is still missing.

As discussed earlier, there is no guarantee for the existence of a saddle point solution for
the min-max problem as posed by J%*(Cy, K'). The algorithm used here is the algorithm
as suggested by Salmon (see Chapter 2) that is modified to suit our problem formulation.
It searches for min-max optimal strategies in the sense of definition 2.14. The assumptions
made in the last chapter assure that the optimization problem is continuous in Cy and A
with closed, bounded domains. No further assumptions are made. The algorithm and a flow

chart for the actual design are outlined as follows.

The Algorithm:

1. Initialization:
Choose initial ¢, C'y (not necessarily stabilizing). 2o, z.(0). 7, 3. Q@ and R;.
Select an initial set X' = {K', A2, ..}, ‘
Setn=1,t=1.
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2. n'* min-max iteration for t; = ty;:
If A, is unstable let 3 = 1. otherwise let 3 = 3.
Perform a minimization with respect to Cy as stated in Definition 6.3 for all K € K™

11131}{;.?[.]2(C0, tp)] + (1 — ;‘j)[max J>*(Co, K, t;)dt]} (158)
Co KeKn
Let the minimizing compensator be denoted by Cg.
Compute J'(t5) = maxXpekn JU>(Cy K ty;)
Perform a maximization with respect to i as stated in Definition 6.2
max JX(CG, K ty) - (1539)
AN

and let the maximizing K be denoted by K™.
Compute JM(t;;) = J¥>(CF. K", t5).
Form K"t = K™ U {~"}.

3. Termination criterion for {; =t
If [T () — Jisy (i) 2 ¢ let n=n+ 1.2 =1, go to step 2.
If|Jm(t) = I (ts)] < & compute Jf/%(tﬁ) = %{Ji'(tfi) + J(¢y;)} and continue at
step 4.

1. General termination criterion: '
If l.]lz/vx(tft) - '],?_/’{Y‘(tf(i—l))i 2 < let . tf(i+1) = tfi + Atf, 1= 1 + 1, n = 1, k:] = ’Cn
and continue at step 2.
¢ 2/~ 2/
It 7)) — IS (o) < ¢ stop.

- Comments:

I. Pure continuity of J*>(Cy, k') in Cy and K is sufficient for J(t;,) to be unbounded
as ty — oo if the H..-bound is violated and for JJ*(t;;) to be a monotonically in-
creasing function of n (the latter fact is ascertained by the optimization over an in-
creaasing set K'). From the considerations in Chapter 2 we also know that JY (i)
is an upper limit for ming, maxg JHU=(Co, K, ty;) and J* (i) is a lower limit for
minge, maxy JHU*(Co K, ty).

2. Let us look at the possible outcomes of this algorithm in the limit as t; — 20

e J™(ts;) unbounded and JM(t;) unbounded or, J(t;,) converges and JM(tg)
unbounded. Then the H..-bound is violated and/or the closed-loop system is

~ unstable. '

o J™(ty) converges and JM () converges but J™(ts) # JM(tsi). Then the system
is asymptotically stable and the H.-bound is satisfied.

o J7(t},) converges, Jp'(ty;) converges and J;"(t5) = IM(t4):
The system is asymptotically stable and the H..-bound is satisfied and the strate-
gies represent a saddle point if the optimal Cy and K are in the interior of their

respective domain.
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Theoretically there could also be the case of “limit oscillations’ of JM(t;;), meaning

that JM(¢;;) does not diverge, but it does not converge to one value either. The
system is asymptotically stable and the H..-bound is satisfied in this case. The actual
implementation will show whether this case is relevant and has to be included into
the general framework. These possible cases show that the goal is not necessarily the
finding of a saddle point but rather we seek the ‘boundedness’ of J7(ty) and JM(ty,)
in the limit as t; — oc. A saddle point strategy is a special case of all the possible
strategies that satisfy our design goals.

Note, that the algorithm as shown assumes that a stabilizing solution exists, that
satisfies the H..-bound. Other “checks’ have to be incorporated to detect all possible
cases as described above. The algorithm as presented shows the schematics and the
most important steps only.

If the above scheme turns out to be computationally too costly, (Note: all previous
computed I have to be stored) then a sequence of pure maximizations and minimiza-
tions (without retaining previous A’} will be applied. This would be equivalent to
finding the worst-case disturbance for an existing system followed by a reoptimization
of the controller with respect to these disturbances. This approach has been used for
example by Rhee and Speyer in [40].

Note that the optimization problem as stated here allows the worst-case H.-
disturbance to be unbounded, if a characterization of the H, -disturbance w with
w € Ly is desired (see e.g. [47]). then this can be incorporated by constraining the
maximization steps to an asymptotically stable closed-loop matrix A (with the max-
imizing w in place).

If the closed-loop system for a certain controller is unstable, then only an H,-
optimization will be performed until a compensator is found that stabilizes the plant.
3 will perform the selection.

The algorithm does not guarantee stability or the H.-bound for the actual limit as
t; — oco. Hence, after the design procedure has been terminated at the largest finite
time ¢; that can be implemented on the computer, stability has to be checked via
the eigenvalues of the closed-loop A-matrix, Ay, and using the H,-ARE to examine
whether the actual design specifications have been met.

The optimization will be embedded into the design tool SANDY and thus uses a
gradient-based method to achieve extrema. This however does not necessarily guaran-

tee a global optimum.

As the cost function is not convex in Cy nor is it concave in It this approach represents
a controller design with worst-case H..-disturbance achievable by the initial guesses of

K and (.
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8 Summary and Concluding Remarks

The pure H.-bound control problem has been solved in algebraic and game theoretical
terms. Connections have been developed in the last technical report (see [24}). On the
other hand, the mixed H,/H-bound control problem can be viewed as a combination of
a stochastic and deterministic game (see e.g. the results of Doyle, Zhou and Bodenheimer
in Chapter 1). Aun algebraic solution cannot he derived as easily as in the pure H,, case.
A formulation in terms of a LQ-type cost function is still possible in mixed H,/H., control
problems where we have to optimize over two different types of disturbances. Solution using
standard Lagrange multipliers has to be extended to cover this case. This is a topic of
ongoing theoretical research in this field.

A frequency-domain cost as defined in section 6.3 of [24] seems to be promissing for the
definition of a mixed H,/H, cost function. This approach, however, will not be pursued
further here. Rather, we will concentrate on the approach as presented in this report. The
proposed formulation offers many insights into the mixed .Hg/H‘x,-bound control problem
and has many close connections to the algebraic approaches of other researchers as discussed
in Chapter +. A frequency-domain parametrization of the worst-case H..-disturbance as in
section 6.3 of [24] cannot provide these properties.

The approach presented here, uses a parametrization of the worst-case H . -disturbance
in the form of w = A to formulate a cost function that represents a mixed HyfH..-
bound control strategy for the most general two disturbance/one criterion as well as the one
disturbance/two criterion case. —

The approach combines a weighted Hj-criterion with a H..-bound criterion using a sin-
gle cost functional. The problem of mixed H;/H-control as posed by the cost function
J¥>(Cy, K) furthermore represents a ‘simultaneous mixed H,/ H..-bound-approach’. Ex-
tensions to an actual mixed H,/H..-design and pu-synthesis can be included. The embedded
H,-problem can be optimized with white noise as driving disturbance or other noise distri-
butions.

The assumed compensator structure is the most general (proper or strictly proper), the
controller order can be chosen freely. The initial guess for the compensator need not be
stabilizing.

The presented algorithm is well defined for every finite time ¢y, and represents a compu-
tational way to solve the min-max problem not in terms of a saddle point solution but in
terms of a "bounded game value’ if it exists.

The formulation of the mixed H;/H .. -control problem as a finite time min-max problem
using parameter optimization methods represents a new, non Riccati-based approach in
mixed H;/H,-bound control.

9 OQutline of Further Research

1. Implementation of the algorithm and creation of a test-bed for the defined cost function.

2. Test on sample plants and comparison with Riccati-based designs. The comparison will
be performed on an analytical basis by comparing the A" that generates the worst-case
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H_.-disturbance with the solution of the according ARE. Further analysis will include
maximum singular value plots and the achieved Hp-norm.

Extension and application of the proposed scheme to the general “two disturbance
inputs/two disturbance output”-case. As long as cross-couplings:are neglected, this
generalization does not pose a significant problem with the defined cost function as we
can define two independent systems for the H,- and H.-objective (both systems share

the same controller).

Simplification of the general system assumptions for a ‘two disturbance inputs/two
criterion outputs’ and relaxation of the imposed constraints (such as orthogonality
conditions or observability/controllability conditions). This task will be performed in
the spirit of Safonov (see [44] or [66]) by using preliminary state, control and distur-
bance transformations.

Possible Extensions and Long Term Goals:

l.

2.

3.
6.

Inclusion of a ~-iteration for an actual minimization of the according H,,-norm.
Extension to p-synthesis if the A-block has a structure.

Actual definition of a strategy for the “two disturbance inputs/two disturbance
output”-case, taking cross-couplings into account.

Modification of the defined cost function to incorporate CLTR-type designs.
Possible use of genetic algorithms to solve the posed optimization problem.

Extension to a general mixed Hy/H.. -synthesis framework.

Work in Progress: g
E. Schoemig and Uy-Loi Ly, "Mixed H;/H., Control with an Output-Feedback Compen-

sator Using Parameter Optimization,” To be presented at the 1992 ACC Conference, Westin
Hotel, Chicago, IL, June 24-26, 1992.
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